Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 10(44): 4532-4545, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31360302

RESUMO

Background: Immunotherapies targeting immune checkpoint proteins CTLA-4, PD-1, and PD-L1 have saved lives, but these therapies have only been effective in some patients. Patients positive for expression of immune checkpoint proteins in the tumor microenvironment show better response to immune checkpoint inhibitors. Consequently, knowledge of which genes are consistently expressed in lymphocytes within the tumor microenvironment can convey potentially effective and complementary new immunotherapy targets. Results: We identified 54 genes that have higher co-expression with the pan T-cell marker CD3E than CTLA4 or PDCD1. In a dataset of 26 patients who received anti-PD-1 therapy, we observed that co-expression between CD3E and PDCD1 was higher among responders than non-responders, supporting our correlation-based approach. Conclusions: The genes highlighted in these analyses, which include CD6, TIGIT, CD96, and SLAMF6, warrant further investigation of their therapeutic potential. Methods: We analyzed and ranked genes that were co-expressed with the pan T-cell marker CD3E in 9,601 human tumors, spanning 31 cancer types. To further identify targets that may be complementary to existing PD-1 therapy, we examined and ranked genes with high CD3E co-expression and relatively low PDCD1 co-expression.

2.
Clin Cancer Res ; 25(11): 3430-3442, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30755439

RESUMO

PURPOSE: Human papillomavirus (HPV)-negative head and neck squamous cell carcinomas (HNSCC) commonly bear disruptive mutations in TP53, resulting in treatment resistance. In these patients, direct targeting of p53 has not been successful, but synthetic lethal approaches have promise. Although Aurora A kinase (AURKA) is overexpressed and an oncogenic driver, its inhibition has only modest clinical effects in HPV-negative HNSCC. We explored a novel combination of AURKA and WEE1 inhibition to overcome intrinsic resistance to AURKA inhibition.Experimental Design: AURKA protein expression was determined by fluorescence-based automated quantitative analysis of patient specimens and correlated with survival. We evaluated treatment with the AURKA inhibitor alisertib (MLN8237) and the WEE1 inhibitor adavosertib (AZD1775), alone or in combination, using in vitro and in vivo HNSCC models. RESULTS: Elevated nuclear AURKA correlated with worse survival among patients with p16(-) HNSCC. Alisertib caused spindle defects, G2-M arrest and inhibitory CDK1 phosphorylation, and cytostasis in TP53 mutant HNSCC FaDu and UNC7 cells. Addition of adavosertib to alisertib instead triggered mitotic entry and mitotic catastrophe. Moreover, in FaDu and Detroit 562 xenografts, this combination demonstrated synergistic effects on tumor growth and extended overall survival compared with either vehicle or single-agent treatment. CONCLUSIONS: Combinatorial treatment with adavosertib and alisertib leads to synergistic antitumor effects in in vitro and in vivo HNSCC models. These findings suggest a novel rational combination, providing a promising therapeutic avenue for TP53-mutated cancers.


Assuntos
Antineoplásicos/farmacologia , Aurora Quinase A/antagonistas & inibidores , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Sinergismo Farmacológico , Feminino , Imunofluorescência , Expressão Gênica , Humanos , Masculino , Camundongos , Gradação de Tumores , Estadiamento de Neoplasias , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Carcinoma de Células Escamosas de Cabeça e Pescoço/metabolismo , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int J Syst Evol Microbiol ; 67(8): 2720-2725, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28809143

RESUMO

Two isolates of Gram-reaction-positive, facultatively anaerobic, motile, rod-shaped, endospore-forming bacteria were identified during a survey of the diversity of strains belonging to the genus Bacillus deposited in the Agriculture Research Service Culture Collection. These strains were originally isolated from soil in Evolution Canyon III (Israel) in a survey of ecological diversification. Phylogenetic analysis of the 16S rRNA gene of strains NRRL B-41294T and NRRL B-41327T determined they were closely related to members of the Bacillus licheniformis clade. The genome of each strain was sequenced, and further analysis indicated that the strains represented unique species based on in silico DNA-DNA hybridization analyses. A phylogenomic analysis revealed that NRRL B-41294T and NRRL B-41327T were closely related to the group that includes B. licheniformis. In phenotypic characterization, both NRRL B-41294T and NRRL B-41327T were found to grow at temperatures of between 15 and 60 °C and tolerated up to 12 % NaCl (w/v). The predominant cellular fatty acids were anteiso-C15 : 0 and iso-C15 : 0, and peptidoglycan from cell walls contained meso-diaminopimelic acid. The DNA G+C content was 45.7 and 44.3 mol% for NRRL B-41327T and NRRL B-41294T, respectively. Furthermore, each strain had a unique carbon utilization pattern that distinguished it from its nearest phylogenetic neighbours. Based upon the consensus of phylogenetic and phenotypic analyses, we conclude that these strains represent two novel species within the genus Bacillus, for which the name Bacillus swezeyi sp. nov. is proposed, with type strain NRRL B-41294T (=CCUG 70177T), and the name Bacillus haynesii sp. nov. is proposed, with type strain NRRL B-41327T (=CCUG 70178T).


Assuntos
Bacillus/classificação , Clima Desértico , Filogenia , Microbiologia do Solo , Bacillus/genética , Bacillus/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , DNA Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Graxos/química , Israel , Hibridização de Ácido Nucleico , Peptidoglicano/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
4.
Oncotarget ; 8(26): 41792-41805, 2017 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-28611298

RESUMO

Cancer is an evolutionary disease, and there is increasing interest in applying tools from evolutionary biology to understand cancer progression. Restriction-site associated DNA sequencing (RADseq) was developed for the field of evolutionary genetics to study adaptation and identify evolutionary relationships among populations. Here we apply RADseq to study tumor evolution, which allows for unbiased sampling of any desired frequency of the genome, overcoming the selection bias and cost limitations inherent to exome or whole-genome sequencing. We apply RADseq to both human pancreatic cancer and zebrafish melanoma samples. Using either a low-frequency (SbfI, 0.4% of the genome) or high-frequency (NsiI, 6-9% of the genome) cutter, we successfully identify single nucleotide substitutions and copy number alterations in tumors, which can be augmented by performing RADseq on sublineages within the tumor. We are able to infer phylogenetic relationships between primary tumors and metastases. These same methods can be used to identify somatic mosaicism in seemingly normal, non-cancerous tissues. Evolutionary studies of cancer that focus on rates of tumor evolution and evolutionary relationships among tumor lineages will benefit from the flexibility and efficiency of restriction-site associated DNA sequencing.


Assuntos
Predisposição Genética para Doença , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Neoplasias/genética , Neoplasias/patologia , Animais , Animais Geneticamente Modificados , Modelos Animais de Doenças , Progressão da Doença , Estudos de Associação Genética , Genômica/métodos , Humanos , Mosaicismo , Gradação de Tumores , Metástase Neoplásica , Estadiamento de Neoplasias , Sequenciamento do Exoma , Sequenciamento Completo do Genoma , Peixe-Zebra
5.
PLoS One ; 10(6): e0130639, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26114300

RESUMO

The objective of this study was to determine the genomic changes that underlie coevolution between Escherichia coli B and bacteriophage T3 when grown together in a laboratory microcosm. We also sought to evaluate the repeatability of their evolution by studying replicate coevolution experiments inoculated with the same ancestral strains. We performed the coevolution experiments by growing Escherichia coli B and the lytic bacteriophage T3 in seven parallel continuous culture devices (chemostats) for 30 days. In each of the chemostats, we observed three rounds of coevolution. First, bacteria evolved resistance to infection by the ancestral phage. Then, a new phage type evolved that was capable of infecting the resistant bacteria as well as the sensitive bacterial ancestor. Finally, we observed second-order resistant bacteria evolve that were resistant to infection by both phage types. To identify the genetic changes underlying coevolution, we isolated first- and second-order resistant bacteria as well as a host-range mutant phage from each chemostat and sequenced their genomes. We found that first-order resistant bacteria consistently evolved resistance to phage via mutations in the gene, waaG, which codes for a glucosyltransferase required for assembly of the bacterial lipopolysaccharide (LPS). Phage also showed repeatable evolution, with each chemostat producing host-range mutant phage with mutations in the phage tail fiber gene T3p48 which binds to the bacterial LPS during adsorption. Two second-order resistant bacteria evolved via mutations in different genes involved in the phage interaction. Although a wide range of mutations occurred in the bacterial waaG gene, mutations in the phage tail fiber were restricted to a single codon, and several phage showed convergent evolution at the nucleotide level. These results are consistent with previous studies in other systems that have documented repeatable evolution in bacteria at the level of pathways or genes and repeatable evolution in viruses at the nucleotide level. Our data are also consistent with the expectation that adaptation via loss-of-function mutations is less constrained than adaptation via gain-of-function mutations.


Assuntos
Bacteriófago T3 , Evolução Molecular Direcionada , Proteínas de Escherichia coli , Escherichia coli , Glucosiltransferases , Mutação de Sentido Incorreto , Proteínas Virais , Substituição de Aminoácidos , Bacteriófago T3/genética , Bacteriófago T3/metabolismo , Escherichia coli/genética , Escherichia coli/virologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
6.
Appl Environ Microbiol ; 76(5): 1349-58, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20048064

RESUMO

Microbial ecologists and systematists are challenged to discover the early ecological changes that drive the splitting of one bacterial population into two ecologically distinct populations. We have aimed to identify newly divergent lineages ("ecotypes") bearing the dynamic properties attributed to species, with the rationale that discovering their ecological differences would reveal the ecological dimensions of speciation. To this end, we have sampled bacteria from the Bacillus subtilis-Bacillus licheniformis clade from sites differing in solar exposure and soil texture within a Death Valley canyon. Within this clade, we hypothesized ecotype demarcations based on DNA sequence diversity, through analysis of the clade's evolutionary history by Ecotype Simulation (ES) and AdaptML. Ecotypes so demarcated were found to be significantly different in their associations with solar exposure and soil texture, suggesting that these and covarying environmental parameters are among the dimensions of ecological divergence for newly divergent Bacillus ecotypes. Fatty acid composition appeared to contribute to ecotype differences in temperature adaptation, since those ecotypes with more warm-adapting fatty acids were isolated more frequently from sites with greater solar exposure. The recognized species and subspecies of the B. subtilis-B. licheniformis clade were found to be nearly identical to the ecotypes demarcated by ES, with a few exceptions where a recognized taxon is split at most into three putative ecotypes. Nevertheless, the taxa recognized do not appear to encompass the full ecological diversity of the B. subtilis-B. licheniformis clade: ES and AdaptML identified several newly discovered clades as ecotypes that are distinct from any recognized taxon.


Assuntos
Bacillus/classificação , Bacillus/genética , Biodiversidade , Ecossistema , Microbiologia Ambiental , Bacillus/química , Bacillus/isolamento & purificação , Análise por Conglomerados , DNA Bacteriano/química , DNA Bacteriano/genética , Ácidos Graxos/análise , Especiação Genética , Genótipo , Dados de Sequência Molecular , Filogenia , Análise de Sequência de DNA , Homologia de Sequência , Estados Unidos
7.
Proc Natl Acad Sci U S A ; 105(7): 2504-9, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18272490

RESUMO

The central questions of bacterial ecology and evolution require a method to consistently demarcate, from the vast and diverse set of bacterial cells within a natural community, the groups playing ecologically distinct roles (ecotypes). Because of a lack of theory-based guidelines, current methods in bacterial systematics fail to divide the bacterial domain of life into meaningful units of ecology and evolution. We introduce a sequence-based approach ("ecotype simulation") to model the evolutionary dynamics of bacterial populations and to identify ecotypes within a natural community, focusing here on two Bacillus clades surveyed from the "Evolution Canyons" of Israel. This approach has identified multiple ecotypes within traditional species, with each predicted to be an ecologically distinct lineage; many such ecotypes were confirmed to be ecologically distinct, with specialization to different canyon slopes with different solar exposures. Ecotype simulation provides a long-needed natural foundation for microbial ecology and systematics.


Assuntos
Bacillus/classificação , Ecologia , Algoritmos , Simulação por Computador , Poluição Ambiental , Dados de Sequência Molecular , Filogenia
8.
Curr Biol ; 17(10): R373-86, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17502094

RESUMO

Bacterial systematists face unique challenges when trying to identify ecologically meaningful units of biological diversity. Whereas plant and animal systematists are guided by a theory-based concept of species, microbiologists have yet to agree upon a set of ecological and evolutionary properties that will serve to define a bacterial species. Advances in molecular techniques have given us a glimpse of the tremendous diversity present within the microbial world, but significant work remains to be done in order to understand the ecological and evolutionary dynamics that can account for the origin, maintenance, and distribution of that diversity. We have developed a conceptual framework that uses ecological and evolutionary theory to identify the DNA sequence clusters most likely corresponding to the fundamental units of bacterial diversity. Taking into account diverse models of bacterial evolution, we argue that bacterial systematics should seek to identify ecologically distinct groups with evidence of a history of coexistence, as based on interpretation of sequence clusters. This would establish a theory-based species unit that holds the dynamic properties broadly attributed to species outside of microbiology.


Assuntos
Bactérias/classificação , Biodiversidade , Bactérias/genética , Evolução Biológica , Análise por Conglomerados , Variação Genética , Genoma Bacteriano , Modelos Genéticos , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...