Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(14): e202218371, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36746757

RESUMO

The potassium salts of carboxylic acids are developed as efficient carboxylating agents through CO2 exchange. We describe these carboxylates as dual-function reagents because they function as a combined source of CO2 and base/metalating agent. By using the salt of a commercially available carboxylic acid, this protocol overcomes difficulties when using CO2 gas or organometallic reagents, such as pressurized containers or strictly inert conditions. The reaction proceeds under mild conditions, does not require transition metals or other additives, and shows broad substrate scope. Through the preparation of several biologically important molecules, we show how this strategy provides an opportunity for isotope labeling with low equivalents of labeled CO2 .

2.
Org Lett ; 24(40): 7446-7449, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36194640

RESUMO

We report the formation of zinc reagents by the reaction of styrylsulfonium salts with zinc powder. Transition metals and other additives are not required for promoting zincation. Zincation tolerates a variety of sensitive functional groups, including esters, bromides, and boronic esters, and proceeds with complete retention of stereochemistry. This method presents a practical approach to the formation of zinc reagents that can be used in a variety of functionalizations, such as halogenation, carboxylation, and Negishi cross-couplings.

3.
Proc Jpn Acad Ser B Phys Biol Sci ; 98(4): 190-205, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35400695

RESUMO

Biaryl synthesis continues to occupy a central role in chemical synthesis. From blockbuster drug molecules to organic electronics, biaryls present numerous possibilities and new applications continue to emerge. Transition-metal-catalyzed coupling reactions represent the gold standard for biaryl synthesis and the mechanistic steps, such as reductive elimination, are well established. Developing routes that exploit alternative mechanistic scenarios could give unprecedented biaryl structures and expand the portfolio of biaryl applications. We have developed metal-free C-H/C-H couplings of aryl sulfoxides with phenols to afford 2-hydroxy-2'-sulfanylbiaryls. This cascade strategy consists of an interrupted Pummerer reaction and [3,3] sigmatropic rearrangement. Our method enables the synthesis of intriguing aromatic molecules, including oligoarenes, enantioenriched dihetero[8]helicenes, and polyfluorobiaryls. From our successes in aryl sulfoxide/phenol couplings and a deeper understanding of sigmatropic rearrangements for biaryl synthesis, we have established related methods, such as aryl sulfoxide/aniline and aryl iodane/phenol couplings. Overall, our fundamental interests in underexplored reaction mechanisms have led to various methods for accessing important biaryl architectures.


Assuntos
Fenol , Sulfóxidos , Metais/química , Sulfóxidos/química
4.
Chem Sci ; 13(2): 421-429, 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-35126974

RESUMO

A modular approach to underexplored, unsymmetrical [1]benzothieno[3,2-b][1]benzothiophene (BTBT) scaffolds delivers a library of BTBT materials from readily available coupling partners by combining a transition-metal free Pummerer CH-CH-type cross-coupling and a Newman-Kwart reaction. This effective approach to unsymmetrical BTBT materials has allowed their properties to be studied. In particular, tuning the functional groups on the BTBT scaffold allows the solid-state assembly and molecular orbital energy levels to be modulated. Investigation of the charge transport properties of BTBT-containing small-molecule:polymer blends revealed the importance of molecular ordering during phase segregation and matching the highest occupied molecular orbital energy level with that of the semiconducting polymer binder, polyindacenodithiophene-benzothiadiazole (PIDTBT). The hole mobilities extracted from transistors fabricated using blends of PIDTBT with phenyl or methoxy functionalized unsymmetrical BTBTs were double those measured for devices fabricated using pristine PIDTBT. This study underscores the value of the synthetic methodology in providing a platform from which to study structure-property relationships in an underrepresented family of unsymmetrical BTBT molecular semiconductors.

5.
Sci Rep ; 12(1): 949, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35042960

RESUMO

Stomata-small pores generally found on the leaves of plants-control gas exchange between plant and the atmosphere. Elucidating the mechanism that underlies such control through the regulation of stomatal opening/closing is important to understand how plants regulate photosynthesis and tolerate against drought. However, up-to-date, molecular components and their function involved in stomatal regulation are not fully understood. We challenged such problem through a chemical genetic approach by isolating and characterizing synthetic molecules that influence stomatal movement. Here, we describe that a small chemical collection, prepared during the development of C-H amination reactions, lead to the discovery of a Stomata Influencing Molecule (SIM); namely, a sulfonimidated oxazole that inhibits stomatal opening. The starting molecule SIM1 was initially isolated from screening of compounds that inhibit light induced opening of dayflower stomata. A range of SIM molecules were rapidly accessed using our state-of-the-art C-H amination technologies. This enabled an efficient structure-activity relationship (SAR) study, culminating in the discovery of a sulfonamidated oxazole derivative (SIM*) having higher activity and enhanced specificity against stomatal regulation. Biological assay results have shed some light on the mode of action of SIM molecules within the cell, which may ultimately lead to drought tolerance-conferring agrochemicals through the control of stomatal movement.

6.
Chemistry ; 27(62): 15387-15391, 2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34409663

RESUMO

Despite common occurrence in molecules of value, methods for transforming sulfonamides are distinctly lacking. Here we introduce easy-to-access sulfonyl pyrroles as synthetic linchpins for sulfonamide functionalization. The versatility of the sulfonyl pyrrole unit is shown by generating a variety of products through chemical, electrochemical and photochemical pathways. Preliminary results on the direct functionalization of primary sulfonamides are also provided, which may lead to new modes of activation.


Assuntos
Pirróis , Sulfonamidas
7.
Angew Chem Int Ed Engl ; 60(26): 14355-14359, 2021 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-33847459

RESUMO

Quinazolinones are common substructures in molecules of medicinal importance. We report an enantioselective copper-catalyzed borylative cyclization for the assembly of privileged pyrroloquinazolinone motifs. The reaction proceeds with high enantio- and diastereocontrol, and can deliver products containing quaternary stereocenters. The utility of the products is demonstrated through further manipulations.

8.
Angew Chem Int Ed Engl ; 59(46): 20278-20289, 2020 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-32544295

RESUMO

Copper-catalyzed borylative multicomponent reactions (MCRs) involving olefins and C-N electrophiles are a powerful tool to rapidly build up molecular complexity. The products from these reactions contain multiple functionalities, such as amino, cyano and boronate groups, that are ubiquitous in medicinal and process chemistry programs. Copper-catalyzed MCRs are particularly attractive because they use a relatively abundant and non-toxic catalyst to selectively deliver high-value products from simple feedstocks such as olefins. In this Minireview, we explore this rapidly emerging field and survey the borylative union of allenes, dienes, styrenes and other olefins, with imines, nitriles and related C-N electrophiles.

9.
Angew Chem Int Ed Engl ; 59(37): 15918-15922, 2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32463942

RESUMO

Trifluoromethyl sulfoxides are a new class of trifluoromethylthiolating reagent. The sulfoxides engage in metal-free C-H trifluoromethylthiolation with a range of (hetero)arenes. The method is also applicable to the functionalization of important compound classes, such as ligand derivatives and polyaromatics, and in the late-stage trifluoromethylthiolation of medicines and agrochemicals. The isolation and characterization of a sulfonium salt intermediate supports an interrupted Pummerer reaction mechanism.

10.
Angew Chem Int Ed Engl ; 59(12): 4879-4882, 2020 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-31917893

RESUMO

An efficient, enantio- and diastereoselective, copper-catalyzed coupling of imines, 1,3-enynes, and diborons is reported. The process shows broad substrate scope and delivers complex, chiral homopropargyl amines; useful building blocks on the way to biologically-relevant compounds. In particular, functionalized homopropargyl amines bearing up to three contiguous stereocenters can be prepared in a single step.

11.
Chem Sci ; 11(42): 11380-11393, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34094380

RESUMO

The copper-catalyzed functionalization of enyne derivatives has recently emerged as a powerful approach in contemporary synthesis. Enynes are versatile and readily accessible substrates that can undergo a variety of reactions to yield densely functionalized, enantioenriched products. In this perspective, we review copper-catalyzed transformations of enynes, such as boro- and hydrofunctionalizations, copper-mediated radical difunctionalizations, and cyclizations. Particular attention is given to the regiodivergent functionalization of 1,3-enynes, and the current mechanistic understanding of such processes.

12.
Chem Sci ; 11(7): 2001-2005, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34123295

RESUMO

A metal-free, oxidative coupling of phenols with various nucleophiles, including arenes, 1,3-diketones and other phenols, is reported. Cross-coupling is mediated by a sulfoxide which inverts the reactivity of the phenol partner. Crucially, the process shows high selectivity for cross-versus homo-coupling and allows efficient access to a variety of aromatic scaffolds including biaryls, benzofurans and, through an iterative procedure, aromatic oligomers.

13.
Angew Chem Int Ed Engl ; 58(44): 15675-15679, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-31479175

RESUMO

Due to their ubiquity in nature and frequent use in organic electronic materials, benzothiophenes are highly sought after. Here we set out an unprecedented procedure for the formation of benzothiophenes by the twofold vicinal C-H functionalization of arenes that does not require metal catalysis. This one-pot annulation proceeds through an interrupted Pummerer reaction/[3,3]-sigmatropic rearrangement/cyclization sequence to deliver various benzothiophene products. The procedure is particularly effective for the rapid synthesis of benzothiophenes from non-prefunctionalized polyaromatic hydrocarbons (PAHs).

14.
Chem Commun (Camb) ; 55(45): 6445-6448, 2019 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-31099348

RESUMO

A novel methodology for the decarboxylative Suzuki-Miyaura-type coupling has been established. This process uses iodine or a bromine source as both the decarboxylation mediator and the terminal oxidant, thus avoiding the need for stoichiometric amounts of transition metal salts previously required. Our new protocol allows for the construction of valuable biaryl architectures through the coupling of (hetero)aromatic carboxylic acids with arylboronic acids. The scope of this decarboxylative Suzuki reaction has been greatly diversified, allowing for previously inaccessible non-ortho-substituted aromatic acids to undergo this transformation. The procedure also benefits from low catalyst loadings and the absence of stoichiometric transition metal additives.

15.
Org Lett ; 20(23): 7498-7503, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30427186

RESUMO

We report a transition-metal-free synthesis of benzofurans from benzothiophenes and phenols that exploits the unique reactivity of sulfoxides. Through a sequence involving an interrupted Pummerer reaction and [3,3] sigmatropic rearrangement, phenols can be combined with readily accessible yet synthetically unexplored benzothiophene S-oxides to provide C3-arylated benzofuran products. The products from this approach can undergo subsequent functionalization to gain access to a range of important benzofuran derivatives.

16.
Chem Sci ; 9(15): 3860-3865, 2018 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-29780518

RESUMO

Methods for the conversion of aliphatic acids to alkyl halides have progressed significantly over the past century, however, the analogous decarboxylative bromination of aromatic acids has remained a longstanding challenge. The development of efficient methods for the synthesis of aryl bromides is of great importance as they are versatile reagents in synthesis and are present in many functional molecules. Herein we report a transition metal-free decarboxylative bromination of aromatic acids. The reaction is applicable to many electron-rich aromatic and heteroaromatic acids which have previously proved poor substrates for Hunsdiecker-type reactions. In addition, our preliminary mechanistic study suggests that radical intermediates are not involved in this reaction, which is in contrast to classical Hunsdiecker-type reactivity. Overall, the process demonstrates a useful method for producing valuable reagents from inexpensive and abundant starting materials.

17.
J Am Chem Soc ; 139(33): 11527-11536, 2017 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-28735532

RESUMO

Constructing products of high synthetic value from inexpensive and abundant starting materials is of great importance. Aryl iodides are essential building blocks for the synthesis of functional molecules, and efficient methods for their synthesis from chemical feedstocks are highly sought after. Here we report a low-cost decarboxylative iodination that occurs simply from readily available benzoic acids and I2. The reaction is scalable and the scope and robustness of the reaction is thoroughly examined. Mechanistic studies suggest that this reaction does not proceed via a radical mechanism, which is in contrast to classical Hunsdiecker-type decarboxylative halogenations. In addition, DFT studies allow comparisons to be made between our procedure and current transition-metal-catalyzed decarboxylations. The utility of this procedure is demonstrated in its application to oxidative cross-couplings of aromatics via decarboxylative/C-H or double decarboxylative activations that use I2 as the terminal oxidant. This strategy allows the preparation of biaryls previously inaccessible via decarboxylative methods and holds other advantages over existing decarboxylative oxidative couplings, as stoichiometric transition metals are avoided.

18.
Org Biomol Chem ; 15(29): 6071-6075, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-28681886

RESUMO

C-H amination is the most powerful method to directly add nitrogen functionalities into a variety of arenes including biology- and materials-oriented molecules. Recent developments in aromatic C-H amination chemistry have enabled the conversion of unactivated arenes into a range of arylamine derivatives without using directing groups or excess amounts of arenes. The key for such successful transformations is the catalytic generation of nitrogen or arene radical intermediates. In this perspective, we discuss recent developments in the radical C-H amination of aromatic molecules. We believe the resulting arylamines, which are hitherto difficult to access, will exhibit unexplored functions for biological and materials application.

19.
Chem Commun (Camb) ; 53(41): 5584-5597, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28492623

RESUMO

The ability to selectively functionalise a specific C-H bond is a long-standing challenge due to the ubiquity of such bonds in organic molecules. One of the most common approaches to overcome this obstacle consists of installing directing groups into substrates to direct the functionalisation towards the desired C-H bond, leaving behind the directing group in the molecule. Alternatively, carboxylic acids have been employed as traceless directing groups that are easily removed after carboxylic acid-directed installation of the desired functionality. This review focuses on the development of this concept and its application to organic synthesis during the last decade.

20.
European J Org Chem ; 2017(25): 3517-3527, 2017 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-29354019

RESUMO

The beginning of the 21st century has seen tremendous growth in the field of decarboxylative activation. Benzoic acid derivatives are now recognised as atom-economic alternatives to traditional cross-coupling partners, and they also benefit from being inexpensive, readily available and shelf-stable reagents. In this microreview we discuss recent developments in the coupling of benzoic acid derivatives either with an arene or with a second benzoic acid derivative, a process often termed decarboxylative oxidative cross-coupling. These procedures offer great promise for the development of highly selective and atom-economic cross-couplings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...