Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Org Chem ; 78(2): 246-52, 2013 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-23237081

RESUMO

Chlorosulfonyl isocyanate (CSI) is reported to react with hydrocarbon alkenes by a stepwise dipolar pathway to give N-chlorosulfonyl-ß-lactams that are readily reduced to ß-lactams. Substitution of a vinyl hydrogen for a vinyl fluorine changes the dynamics for reaction with CSI so that a concerted pathway is favored. Rate constants were measured for reactions of CSI with monofluoroalkenes and some hydrocarbon alkenes. Activation parameters for two hydrocarbon alkenes and two monofluoroalkenes support this change in mechanism. A plot generated from the natural log of rate constants vs ionization potentials (IP) indicates that fluoroalkenes with IP values >8.9 eV react by a concerted process. Electron-rich monofluoroalkenes with IP values <8.5 eV were found to react by a single-electron transfer (SET) pathway. Hydrocarbon alkenes were also found to react by this dipolar stepwise SET intermediate rather than the previously accepted stepwise dipolar pathway. Data support a pre-equilibrium complex on the reaction pathway just before the rate-determining step of the concerted pathway and a SET intermediate for the stepwise reactions. When the reactions are carried out at lower temperatures, the equilibrium shifts toward the complex or SET intermediate enhancing the synthetic utility of these reactions. Kinetic data also support formation of a planar transition state rather than the orthogonal geometry as reported for ketene [2 + 2] cycloadditions.

2.
J Am Chem Soc ; 125(1): 113-23, 2003 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-12515512

RESUMO

This work explores the potential of iridium complexes of the N-heterocyclic carbene oxazoline ligands 1 in asymmetric hydrogenations of arylalkenes. The accessible carbene precursors, imidazolium salts 2, and robust iridium complexes 5 facilitated a discovery/optimization approach that featured preparation of a small library of iridium complexes, parallel hydrogenation reactions, and automated analysis. Three of the complexes (5ab, 5ad, and 5dp) and a similar rhodium complex (6ap) were studied by single-crystal X-ray diffraction techniques. This revealed molecular features of 6ap, and presumably the corresponding iridium complex 5ap, that the others do not have. In enantioselective hydrogenations of arylalkenes complex 5ap was the best for many, but not all, substrates. The enantioselectivities and conversions observed were sensitive to minor changes to the catalyst and substrate structure. Ligands with aliphatic N-heterocyclic carbene substituents gave complexes that are inactive, and do not lose the 1,5-cyclooctadiene ligands under the hydrogenation conditions. Experiments to investigate this unexpected observation imply that it is of a steric, rather than an electronic, origin. Temperature and pressure effects on the conversions and enantioselectivities of these reactions had minimal effects for some alkenes, but profound effects for others. In one case, the enantioselectivities obtained at high-pressure/low-temperature conditions were opposite to those obtained under high-temperature/low-pressure conditions (-64% enantiomeric excess versus +89% enantiomeric excess); a transformation from one prevalent mechanism to another is inferred from this. The studies of pressure dependence revealed that many reactions proceeded with high conversions, and optimal enantioselectivities in approximately 2 h when only 1 bar of hydrogen was used. Deuterium-labeling experiments provide evidence for other types of competing mechanisms that lead to D-incorporation at positions that do not correspond to direct addition to the double bond.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...