Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 22(10)2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34069782

RESUMO

Parkinson's disease (PD) is the second most common neurodegenerative disorder, mainly characterized by motor deficits correlated with progressive dopaminergic neuronal loss in the substantia nigra pars compacta (SN). Necroptosis is a caspase-independent form of regulated cell death mediated by the concerted action of receptor-interacting protein 3 (RIP3) and the pseudokinase mixed lineage domain-like protein (MLKL). It is also usually dependent on RIP1 kinase activity, influenced by further cellular clues. Importantly, necroptosis appears to be strongly linked to several neurodegenerative diseases, including PD. Here, we aimed at identifying novel chemical inhibitors of necroptosis in a PD-mimicking model, by conducting a two-step screening. Firstly, we phenotypically screened a library of 31 small molecules using a cellular model of necroptosis and, thereafter, the hit compound effect was validated in vivo in a sub-acute 1-methyl-1-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP) PD-related mouse model. From the initial compounds, we identified one hit-Oxa12-that strongly inhibited necroptosis induced by the pan-caspase inhibitor zVAD-fmk in the BV2 murine microglia cell line. More importantly, mice exposed to MPTP and further treated with Oxa12 showed protection against MPTP-induced dopaminergic neuronal loss in the SN and striatum. In conclusion, we identified Oxa12 as a hit compound that represents a new chemotype to tackle necroptosis. Oxa12 displays in vivo effects, making this compound a drug candidate for further optimization to attenuate PD pathogenesis.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Necroptose/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Encéfalo/metabolismo , Morte Celular/efeitos dos fármacos , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Proteínas Ativadoras de GTPase/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Necroptose/fisiologia , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/metabolismo , Parte Compacta da Substância Negra/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Substância Negra/metabolismo
2.
Curr Pharm Des ; 25(14): 1623-1642, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31244412

RESUMO

Triazenes are a very useful and diverse class of compounds that have been studied for their potential in the treatment of many tumors including brain tumor, leukemia and melanoma. Novel compounds of this class continue to be developed as either anticancer compounds or even with other therapeutic applications. This review focused on several types of triazenes from the simplest ones like 1,3-dialkyl-3-acyltriazenes to the more complex ones like combi-triazenes with an emphasis on how triazenes have been developed as effective antitumor agents.


Assuntos
Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Triazenos/farmacologia , Humanos
3.
Eur J Med Chem ; 172: 16-25, 2019 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-30939350

RESUMO

Herein we report novel hybrid compounds based on valproic acid and DNA-alkylating triazene moieties, 1, with therapeutic potential for glioblastoma multiforme chemotherapy. We identified hybrid compounds 1d and 1e to be remarkably more potent against glioma and more efficient in decreasing invasive cell properties than temozolomide and endowed with chemical and plasma stability. In contrast to temozolomide, which undergoes hydrolysis to release an alkylating metabolite, the valproate hybrids showed a low potential to alkylate DNA. Key physicochemical properties align for optimal CNS penetration, highlighting the potential of these effective triazene based-hybrids for enhanced anticancer chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Triazenos/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias Encefálicas/patologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Glioma/patologia , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Triazenos/síntese química , Triazenos/química , Células Tumorais Cultivadas
4.
Eur J Med Chem ; 149: 69-78, 2018 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-29499488

RESUMO

Hybrid compounds may play a critical role in the context of the malaria eradication agenda, which will benefit from therapeutic tools active against the symptomatic erythrocytic stage of Plasmodium infection, and also capable of eliminating liver stage parasites. To address the need for efficient multistage antiplasmodial compounds, a small library of 1,2,4,5-tetraoxane-8- aminoquinoline hybrids, with the metabolically labile C-5 position of the 8-aminoquinoline moiety blocked with aryl groups, was synthesized and screened for antiplasmodial activity and metabolic stability. The hybrid compounds inhibited development of intra-erythrocytic forms of the multidrug-resistant Plasmodium falciparum W2 strain, with EC50 values in the nM range, and with low cytotoxicity against mammalian cells. The compounds also inhibited the development of P. berghei liver stage parasites, with the most potent compounds displaying EC50 values in the low µM range. SAR analysis revealed that unbranched linkers between the endoperoxide and 8-aminoquinoline pharmacophores are most beneficial for dual antiplasmodial activity. Importantly, hybrids were significantly more potent than a 1:1 mixture of 8-aminoquinoline-tetraoxane, highlighting the superiority of the hybrid approach over the combination therapy. Furthermore, aryl substituents at C-5 of the 8-aminoquinoline moiety improve the compounds' metabolic stability when compared with their primaquine (i.e. C-5 unsubstituted) counterparts. Overall, this study reveals that blocking the quinoline C-5 position does not result in loss of dual-stage antimalarial activity, and that tetraoxane-8- aminoquinoline hybrids are an attractive approach to achieve elimination of exo- and intraerythrocytic parasites, thus with the potential to be used in malaria eradication campaigns.


Assuntos
Aminoquinolinas/química , Aminoquinolinas/uso terapêutico , Antimaláricos/síntese química , Aminoquinolinas/metabolismo , Animais , Antimaláricos/metabolismo , Antimaláricos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Estabilidade de Medicamentos , Eritrócitos/parasitologia , Humanos , Fígado/parasitologia , Peróxidos/química , Peróxidos/metabolismo , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/síntese química , Relação Estrutura-Atividade
5.
ACS Chem Neurosci ; 8(1): 50-59, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-27665765

RESUMO

Glioblastoma (GBM) is the most common and aggressive type of brain tumor in adults. The triazene Temozolomide (TMZ), an alkylating drug, is the classical chemotherapeutic agent for gliomas, but has been disappointing against the highly invasive and resistant nature of GBM. Hybrid compounds may open new horizons within this challenge. The multicomponent therapeutic strategy here used resides on a combination of two repurposing drugs acting by different but potentially synergistic mechanisms, improved efficacy, and lower resistance effects. We synthesized a new hybrid compound (HYBCOM) by covalently binding a TMZ analogue to valproic acid, a histone deacetylase inhibitor drug that was shown to sensitize TMZ-resistant glioma cells. Advantages of this new molecule as compared to TMZ, in terms of chemotherapeutic efficacy, were investigated. Our results evidenced that HYBCOM more efficiently decreased the viability and proliferation of the GL261 glioma cells, while showing to better target the tumor cells than the functionally normal astrocytes. Increased cytotoxicity by HYBCOM may be a consequence of the improved autophagic process observed. Additionally, HYBCOM changed the morphology of GL261 cells into a nonpolar, more rounded shape, impairing cell migration ability. Most interesting, and in opposite to TMZ, cells exposed to HYBCOM did not enhance the expression of drug resistance proteins, a major issue in the treatment of GBM. Overall, our studies indicate that HYBCOM has promising chemotherapeutic benefits over the classical TMZ, and future studies should assess if the treatment translates into efficacy in glioblastoma experimental models and reveal clinical benefits in GBM patients.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioma/tratamento farmacológico , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos Alquilantes/síntese química , Antineoplásicos Alquilantes/química , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dacarbazina/análogos & derivados , Dacarbazina/química , Dacarbazina/farmacologia , Dacarbazina/uso terapêutico , Glioma/patologia , Humanos , Temozolomida
6.
Bioorg Med Chem ; 23(16): 5120-30, 2015 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25913864

RESUMO

The discovery of new drugs to treat malaria is a continuous effort for medicinal chemists due to the emergence and spread of resistant strains of Plasmodium falciparum to nearly all used antimalarials. The rapid adaptation of the malaria parasite remains a major limitation to disease control. Development of hybrid antimalarial agents has been actively pursued as a promising strategy to overcome the emergence of resistant parasite strains. This review presents the journey that started with simple combinations of two active moieties into one chemical entity and progressed into a delivery/targeted system based on major antimalarial classes of drugs. The rationale for providing different mechanisms of action against a single or additional targets involved in the multiple stages of the parasite's life-cycle is highlighted. Finally, a perspective for this polypharmacologic approach is presented.


Assuntos
Antimaláricos/administração & dosagem , Antimaláricos/química , Sistemas de Liberação de Medicamentos/métodos , Descoberta de Drogas/métodos , Malária/tratamento farmacológico , Plasmodium/efeitos dos fármacos , Polifarmacologia , Aminoquinolinas/administração & dosagem , Aminoquinolinas/química , Aminoquinolinas/farmacologia , Aminoquinolinas/uso terapêutico , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Resistência a Medicamentos , Humanos , Malária/parasitologia , Terapia de Alvo Molecular/métodos , Peróxidos/administração & dosagem , Peróxidos/química , Peróxidos/farmacologia , Peróxidos/uso terapêutico , Plasmodium/fisiologia
7.
ChemMedChem ; 10(5): 883-90, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25784585

RESUMO

A diversity-oriented library of s-triazine-based hybrids was screened for activity against the chloroquine-resistant Plasmodium falciparum W2 strain. The most striking result was sub-micromolar activity against cultured erythrocytic-stage parasites of hybrid molecules containing one or two 8-aminoquinoline moieties. These compounds were not clearly toxic to human cells. The most effective blood-schizontocidal s-triazine derivatives were then screened for activity against the liver stage of malaria parasites. The s-triazine hybrid containing two 8-aminoquinoline moieties and one chlorine atom emerged as the most potent against P. berghei liver-stage infection, active in the low nanomolar region, combined with good metabolic stability in rat liver microsomes. These results indicate that s-triazine-8-aminoquinoline-based hybrids are excellent starting points for lead optimization as dual-stage antimalarials.


Assuntos
Antimaláricos/farmacologia , Eritrócitos/parasitologia , Fígado/parasitologia , Malária/tratamento farmacológico , Plasmodium berghei/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Triazinas/farmacologia , Animais , Antimaláricos/química , Células CHO , Linhagem Celular Tumoral , Proliferação de Células , Cricetinae , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Malária/parasitologia , Testes de Sensibilidade Parasitária , Ratos , Relação Estrutura-Atividade , Triazinas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...