Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oecologia ; 145(1): 140-52, 2005 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16025349

RESUMO

Models of community regulation commonly incorporate gradients of disturbance inversely related to the role of biotic interactions in regulating intermediate trophic levels. Higher trophic-level organisms are predicted to be more strongly limited by intermediate levels of disturbance than are the organisms they consume. We used a manipulation of the frequency of hydrological disturbance in an intervention analysis to examine its effects on small-fish communities in the Everglades, USA. From 1978 to 2002, we monitored fishes at one long-hydroperiod (average 350 days) and at one short-hydroperiod (average 259 days; monitoring started here in 1985) site. At a third site, managers intervened in 1985 to diminish the frequency and duration of marsh drying. By the late 1990s, the successional dynamics of density and relative abundance at the intervention site converged on those of the long-hydroperiod site. Community change was manifested over 3 to 5 years following a dry-down if a site remained inundated; the number of days since the most recent drying event and length of the preceding dry period were useful for predicting population dynamics. Community dissimilarity was positively correlated with the time since last dry. Community dynamics resulted from change in the relative abundance of three groups of species linked by life-history responses to drought. Drought frequency and intensity covaried in response to hydrological manipulation at the landscape scale; community-level successional dynamics converged on a relatively small range of species compositions when drought return-time extended beyond 4 years. The density of small fishes increased with diminution of drought frequency, consistent with disturbance-limited community structure; less-frequent drying than experienced in this study (i.e., longer return times) yields predator-dominated regulation of small-fish communities in some parts of the Everglades.


Assuntos
Desastres , Ecossistema , Peixes , Modelos Teóricos , Animais , Florida , Densidade Demográfica , Dinâmica Populacional
2.
Oecologia ; 102(4): 460-466, 1995 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28306889

RESUMO

We examined microbial colonization, exoenzyme activity, and processing of leaves of yellow poplar (Liriodendron tulipifera), red maple (Acer rubrum), and white oak (Quercus alba) in three streams on the Allegheny Plateau of West Virginia, United States. Leaf packs were placed in streams that varied in their underlying bedrock geology, and therefore in their sensitivity to the high level of acidic precipitation that occurs in this region. The mean pH of the streams was 4.3 in the South Fork of Red Run (SFR), 6.2 in Wilson Hollow Run (WHR), and 7.7 in the North Fork of Hickman Slide Run (HSR). Through time, the patterns of microbial biomass and exoenzyme activity were generally similar among leaf species, but the magnitude of microbial biomass and exoenzyme activity differed among leaf species. Pectinase activity was greatest in HSR, the most alkaline stream, whereas the activity of exocellulase and xylanase was greatest in WHR and SFR, the intermediate and acidic streams. This variation in the activity of different exoenzymes was consistent with published pH optima for these exoenzymes. Variation in processing rates, both among leaf species and among streams, seems to be related to the level of microbial exoenzyme activity on the leaf detritus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...