Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38203757

RESUMO

We have developed a chimeric antigen receptor (CAR) against the six-transmembrane epithelial antigen of prostate-1 (STEAP1), which is expressed in prostate cancer, Ewing sarcoma, and other malignancies. In the present study, we investigated the effect of substituting costimulatory domains and spacers in this STEAP1 CAR. We cloned four CAR constructs with either CD28 or 4-1BB costimulatory domains, combined with a CD8a-spacer (sp) or a mutated IgG-spacer. The CAR T-cells were evaluated in short- and long-term in vitro T-cell assays, measuring cytokine production, tumor cell killing, and CAR T-cell expansion and phenotype. A xenograft mouse model of prostate cancer was used for in vivo comparison. All four CAR constructs conferred CD4+ and CD8+ T cells with STEAP1-specific functionality. A CD8sp_41BBz construct and an IgGsp_CD28z construct were selected for a more extensive comparison. The IgGsp_CD28z CAR gave stronger cytokine responses and killing in overnight caspase assays. However, the 41BB-containing CAR mediated more killing (IncuCyte) over one week. Upon six repeated stimulations, the CD8sp_41BBz CAR T cells showed superior expansion and lower expression of exhaustion markers (PD1, LAG3, TIGIT, TIM3, and CD25). In vivo, both the CAR T variants had comparable anti-tumor activity, but persisting CAR T-cells in tumors were only detected for the 41BBz variant. In conclusion, the CD8sp_41BBz STEAP1 CAR T cells had superior expansion and survival in vitro and in vivo, compared to the IgGsp_CD28z counterpart, and a less exhausted phenotype upon repeated antigen exposure. Such persistence may be important for clinical efficacy.


Assuntos
Neoplasias da Próstata , Receptores de Antígenos Quiméricos , Animais , Humanos , Masculino , Camundongos , Antígenos de Neoplasias/genética , Linfócitos T CD8-Positivos , Citocinas , Modelos Animais de Doenças , Oxirredutases , Próstata , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Receptores de Antígenos Quiméricos/genética
2.
Biomedicines ; 11(2)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36830995

RESUMO

Therapy employing T cells modified with chimeric antigen receptors (CARs) is effective in hematological malignancies but not yet in solid cancers. CAR T cell activity in solid tumors is limited by immunosuppressive factors, including transforming growth factor ß (TGFß). Here, we describe the development of a switch receptor (SwR), in which the extracellular domains of the TGFß receptor are fused to the intracellular domains from the IL-2/15 receptor. We evaluated the SwR in tandem with two variants of a CAR that we have developed against STEAP1, a protein highly expressed in prostate cancer. The SwR-CAR T cell activity was assessed against a panel of STEAP1+/- prostate cancer cell lines with or without over-expression of TGFß, or with added TGFß, by use of flow cytometry cytokine and killing assays, Luminex cytokine profiling, cell counts, and flow cytometry phenotyping. The results showed that the SwR-CAR constructs improved the functionality of CAR T cells in TGFß-rich environments, as measured by T cell proliferation and survival, cytokine response, and cytotoxicity. In assays with four repeated target-cell stimulations, the SwR-CAR T cells developed an activated effector memory phenotype with retained STEAP1-specific activity. In conclusion, the SwR confers CAR T cells with potent and durable in vitro functionality in TGFß-rich environments. The SwR may be used as an add-on construct for CAR T cells or other forms of adoptive cell therapy.

3.
Mol Ther Oncolytics ; 26: 189-206, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35860008

RESUMO

Chimeric antigen receptors (CARs) that retarget T cells against CD19 show clinical efficacy against B cell malignancies. Here, we describe the development of a CAR against the six-transmembrane epithelial antigen of prostate-1 (STEAP1), which is expressed in ∼90% of prostate cancers, and subgroups of other malignancies. STEAP1 is an attractive target, as it is associated with tumor invasiveness and progression and only expressed at low levels in normal tissues, apart from the non-vital prostate gland. We identified the antibody coding sequences from a hybridoma and designed a CAR that is efficiently expressed in primary T cells. The T cells acquired the desired anti-STEAP1 specificity, with a polyfunctional response including production of multiple cytokines, proliferation, and the killing of cancer cells. The response was observed for both CD4+ and CD8+ T cells, and against all STEAP1+ target cell lines tested. We evaluated the in vivo CAR T activity in both subcutaneous and metastatic xenograft mouse models of prostate cancer. Here, the CAR T cells infiltrated tumors and significantly inhibited tumor growth and extended survival in a STEAP1-dependent manner. We conclude that the STEAP1 CAR exhibits potent in vitro and in vivo functionality and can be further developed toward potential clinical use.

4.
J Cell Sci ; 134(18)2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34494097

RESUMO

Lysosomal signaling facilitates the migration of immune cells by releasing Ca2+ to activate the actin-based motor myosin II at the cell rear. However, how the actomyosin cytoskeleton physically associates to lysosomes is unknown. We have previously identified myosin II as a direct interactor of Rab7b, a small GTPase that mediates the transport from late endosomes/lysosomes to the trans-Golgi network (TGN). Here, we show that Rab7b regulates the migration of dendritic cells (DCs) in one- and three-dimensional environments. DCs are immune sentinels that transport antigens from peripheral tissues to lymph nodes to activate T lymphocytes and initiate adaptive immune responses. We found that the lack of Rab7b reduces myosin II light chain phosphorylation and the activation of the transcription factor EB (TFEB), which controls lysosomal signaling and is required for fast DC migration. Furthermore, we demonstrate that Rab7b interacts with the lysosomal Ca2+ channel TRPML1 (also known as MCOLN1), enabling the local activation of myosin II at the cell rear. Taken together, our findings identify Rab7b as the missing physical link between lysosomes and the actomyosin cytoskeleton, allowing control of immune cell migration through lysosomal signaling. This article has an associated First Person interview with the first author of the paper.


Assuntos
Actomiosina , Lisossomos , Citoesqueleto , Células Dendríticas , Endossomos , Humanos
5.
Front Neurosci ; 14: 760, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32982660

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal X-linked muscular disease caused by defective expression of the cytoskeletal protein dystrophin (Dp427). Selected autonomic and central neurons, including retinal neurons, express Dp427 and/or dystrophin shorter isoforms. Because of this, DMD patients may also experience different forms of cognitive impairment, neurological and autonomic disorders, and specific visual defects. DMD-related damages to the nervous system are established during development, suggesting a role for all dystrophin isoforms in neural circuit development and differentiation; however, to date, their function in retinogenesis has never been investigated. In this large-scale study, we analyzed whether the lack of Dp427 affects late retinogenesis in the mdx mouse, the most well studied animal model of DMD. Retinal gene expression and layer maturation, as well as neural cell proliferation, apoptosis, and differentiation, were evaluated in E18 and/or P0, P5, P10, and adult mice. In mdx mice, expression of Capn3, Id3 (E18-P5), and Dtnb (P5) genes, encoding proteins involved in different aspects of retina development and synaptogenesis (e.g., Calpain 3, DNA-binding protein inhibitor-3, and ß-dystrobrevin, respectively), was transiently reduced compared to age-matched wild type mice. Concomitantly, a difference in the time required for the retinal ganglion cell layer to reach appropriate thickness was observed (P0-P5). Immunolabeling for specific cell markers also evidenced a significant dysregulation in the number of GABAergic amacrine cells (P5-P10), a transient decrease in the area immunopositive for the Vesicular Glutamate Transporter 1 (VGluT1) during ribbon synapse maturation (P10) and a reduction in the number of calretinin+ retinal ganglion cells (RGCs) (adults). Finally, the number of proliferating retinal progenitor cells (P5-P10) and apoptotic cells (P10) was reduced. These results support the hypothesis of a role for Dp427 during late retinogenesis different from those proposed in consolidated neural circuits. In particular, Dp427 may be involved in shaping specific steps of retina differentiation. Notably, although most of the above described quantitative alterations recover over time, the number of calretinin+ RGCs is reduced only in the mature retina. This suggests that alterations subtler than the timing of retinal maturation may occur, a hypothesis that demands further in-depth functional studies.

6.
Nanoscale ; 9(17): 5671-5676, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28422233

RESUMO

Detecting stiff nanoparticles buried in soft biological matrices by atomic force microscopy (AFM) based techniques represents a new frontier in the field of scanning probe microscopies, originally developed as surface characterization methods. Here we report the detection of stiff (magnetic) nanoparticles (NPs) internalized in cells by using contact resonance AFM (CR-AFM) employed as a potentially non-destructive subsurface characterization tool. Magnetite (Fe3O4) NPs were internalized in microglial cells from cerebral cortices of mouse embryos of 18 days by phagocytosis. Nanomechanical imaging of cells was performed by detecting the contact resonance frequencies (CRFs) of an AFM cantilever held in contact with the sample. Agglomerates of NPs internalized in cells were visualized on the basis of the local increase in the contact stiffness with respect to the surrounding biological matrix. A second AFM-based technique for nanomechanical imaging, i.e., HarmoniX™, as well as magnetic force microscopy and light microscopy were used to confirm the CR-AFM results. Thus, CR-AFM was demonstrated as a promising technique for subsurface imaging of nanomaterials in biological samples.


Assuntos
Microglia/ultraestrutura , Microscopia de Força Atômica , Nanopartículas , Animais , Estruturas Celulares , Embrião de Mamíferos , Camundongos , Vibração
7.
Mol Cell Neurosci ; 80: 1-17, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28161362

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal disease, determined by lack of dystrophin (Dp427), a muscular cytoskeletal protein also expressed by selected neuronal populations. Consequently, besides muscular wasting, both human patients and DMD animal models suffer several neural disorders. In previous studies on the superior cervical ganglion (SCG) of wild type and dystrophic mdx mice (Lombardi et al. 2008), we hypothesized that Dp427 could play some role in NGF-dependent axonal growth, both during development and adulthood. To address this issue, we first analyzed axon regeneration potentials of SCG neurons of both genotypes after axotomy in vivo. While noradrenergic innervation of mdx mouse submandibular gland, main source of nerve growth factor (NGF), recovered similarly to wild type, iris innervation (muscular target) never did. We, therefore, evaluated whether dystrophic SCG neurons were poorly responsive to NGF, especially at low concentration. Following in vitro axotomy in the presence of either 10 or 50ng/ml NGF, the number of regenerated axons in mdx mouse neuron cultures was indeed reduced, compared to wild type, at the lower concentration. Neurite growth parameters (i.e. number, length), growth cone dynamics and NGF/TrkA receptor signaling in differentiating neurons (not injured) were also significantly reduced when cultured with 10ng/ml NGF, but also with higher NGF concentrations. In conclusion, we propose a role for Dp427 in NGF-dependent cytoskeletal dynamics associated to growth cone advancement, possibly through indirect stabilization of TrkA receptors. Considering NGF activity in nervous system development/remodeling, this aspect could concur in some of the described DMD-associated neural dysfunctions.


Assuntos
Axônios/efeitos dos fármacos , Distrofina/genética , Fator de Crescimento Neural/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Gânglio Cervical Superior/citologia , Animais , Animais Recém-Nascidos , Axônios/ultraestrutura , Axotomia , Caspase 3/metabolismo , Células Cultivadas , Relação Dose-Resposta a Droga , Distroglicanas/metabolismo , Distrofina/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/genética , Iris/inervação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos mdx , Fibras Nervosas/metabolismo , Fibras Nervosas/patologia , Fibras Nervosas/ultraestrutura , Proteínas do Tecido Nervoso/metabolismo , Neurônios/ultraestrutura , Receptor trkB/metabolismo , Tubulina (Proteína)/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
8.
PLoS One ; 8(9): e73385, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24023867

RESUMO

The amygdala is a brain structure considered a key node for the regulation of neuroendocrine stress response. Stress-induced response in amygdala is accomplished through neurotransmitter activation and an alteration of gene expression. MicroRNAs (miRNAs) are important regulators of gene expression in the nervous system and are very well suited effectors of stress response for their ability to reversibly silence specific mRNAs. In order to study how acute stress affects miRNAs expression in amygdala we analyzed the miRNA profile after two hours of mouse restraint, by microarray analysis and reverse transcription real time PCR. We found that miR-135a and miR-124 were negatively regulated. Among in silico predicted targets we identified the mineralocorticoid receptor (MR) as a target of both miR-135a and miR-124. Luciferase experiments and endogenous protein expression analysis upon miRNA upregulation and inhibition allowed us to demonstrate that mir-135a and mir-124 are able to negatively affect the expression of the MR. The increased levels of the amygdala MR protein after two hours of restraint, that we analyzed by western blot, negatively correlate with miR-135a and miR-124 expression. These findings point to a role of miR-135a and miR-124 in acute stress as regulators of the MR, an important effector of early stress response.


Assuntos
Corticosteroides/metabolismo , Tonsila do Cerebelo/metabolismo , Regulação da Expressão Gênica , MicroRNAs/genética , Estresse Psicológico/genética , Estresse Psicológico/metabolismo , Animais , Sequência de Bases , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Mineralocorticoides/genética , Receptores de Mineralocorticoides/metabolismo
9.
J Biol Chem ; 287(36): 30358-67, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-22807446

RESUMO

Nascent HLA-class I molecules are stabilized by proteasome-derived peptides in the ER and the new complexes proceed to the cell surface through the post-ER vesicles. It has been shown, however, that less stable complexes can exchange peptides in the Trans Golgi Network (TGN). HLA-B27 are the most studied HLA-class I molecules due to their association with Ankylosing Spondylitis (AS). Chimeric proteins driven by TAT of HIV have been exploited by us to deliver viral epitopes, whose cross-presentation by the HLA-B27 molecules was proteasome and TAP-independent and not restricted to Antigen-Presenting Cells (APC). Here, using these chimeric proteins as epitope suppliers, we compared with each other and with the HLA-A2 molecules, the two HLA-B*2705 and B*2709 alleles differing at residue 116 (D116H) and differentially associated with AS. We found that the antigen presentation by the two HLA-B27 molecules was proteasome-, TAP-, and APC-independent whereas the presentation by the HLA-A2 molecules required proteasome, TAP and professional APC. Assuming that such difference could be due to the unpaired, highly reactive Cys-67 distinguishing the HLA-B27 molecules, C67S mutants in HLA-B*2705 and B*2709 and V67C mutant in HLA-A*0201 were also analyzed. The results showed that this mutation did not influence the HLA-A2-restricted antigen presentation while it drastically affected the HLA-B27-restricted presentation with, however, remarkable differences between B*2705 and B*2709. The data, together with the occurrence on the cell surface of unfolded molecules in the case of C67S-B*2705 mutant but not in that of C67S-B*2709 mutant, indicates that Cys-67 has a more critical role in stabilizing the B*2705 rather than the B*2709 complexes.


Assuntos
Apresentação de Antígeno/fisiologia , Células Apresentadoras de Antígenos/imunologia , Epitopos/imunologia , Antígeno HLA-B27/imunologia , Complexo de Endopeptidases do Proteassoma/imunologia , Células Apresentadoras de Antígenos/metabolismo , Epitopos/genética , Epitopos/metabolismo , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Antígeno HLA-A2/metabolismo , Antígeno HLA-B27/genética , Antígeno HLA-B27/metabolismo , Células HeLa , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...