Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 152(9): 094302, 2020 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-33480743

RESUMO

The low-energy electronic states of UN and UN+ have been examined using high-level electronic structure calculations and two-color photoionization techniques. The experimental measurements provided an accurate ionization energy for UN (IE = 50 802 ± 5 cm-1). Spectra for UN+ yielded ro-vibrational constants and established that the ground state has the electronic angular momentum projection Ω = 4. Ab initio calculations were carried out using the spin-orbit state interacting approach with the complete active space second-order perturbation theory method. A series of correlation consistent basis sets were used in conjunction with small-core relativistic pseudopotentials on U to extrapolate to the complete basis set limits. The results for UN correctly obtained an Ω = 3.5 ground state and demonstrated a high density of configurationally related excited states with closely similar ro-vibrational constants. Similar results were obtained for UN+, with reduced complexity owing to the smaller number of outer-shell electrons. The calculated IE for UN was in excellent agreement with the measured value. Improved values for the dissociation energies of UN and UN+, as well as their heats of formation, were obtained using the Feller-Peterson-Dixon composite thermochemistry method, including corrections up through coupled cluster singles, doubles, triples and quadruples. An analysis of the ab initio results from the perspective of the ligand field theory shows that the patterns of electronic states for both UN and UN+ can be understood in terms of the underlying energy level structure of the atomic metal ion.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...