Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(9)2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37761005

RESUMO

Human epidermal growth factor receptor 2 (HER2) is overexpressed in numerous cancer cell types. Therapeutic antibodies and chimeric antigen receptors (CARs) against HER2 were developed to treat human tumors. The major limitation of anti-HER2 CAR-T lymphocyte therapy is attributable to the low HER2 expression in a wide range of normal tissues. Thus, side effects are caused by CAR lymphocyte "on-target off-tumor" reactions. We aimed to develop safer HER2-targeting CAR-based therapy. CAR constructs against HER2 tumor-associated antigen (TAA) for transient expression were delivered into target T and natural killer (NK) cells by an effective and safe non-viral transfection method via nucleofection, excluding the risk of mutations associated with viral transduction. Different in vitro end-point and real-time assays of the CAR lymphocyte antitumor cytotoxicity and in vivo human HER2-positive tumor xenograft mice model proved potent cytotoxic activity of the generated CAR-T-NK cells. Our data suggest transient expression of anti-HER2 CARs in plasmid vectors by human lymphocytes as a safer treatment for HER2-positive human cancers. We also conducted preliminary investigations to elucidate if fucosylated chondroitin sulfate may be used as a possible agent to decrease excessive cytokine production without negative impact on the CAR lymphocyte antitumor effect.

2.
Biochemistry (Mosc) ; 88(1): 86-104, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37068872

RESUMO

Plasticity of tumor cells (multitude of molecular regulation pathways) allows them to evade cytocidal effects of chemo- and/or radiation therapy. Metabolic adaptation of the surviving cells is based on transcriptional reprogramming. Similarly to the process of natural cell aging, specific features of the survived tumor cells comprise the therapy-induced senescence phenotype. Tumor cells with this phenotype differ from the parental cells since they become less responsive to drugs and form aggressive progeny. Importance of the problem is explained by the general biological significance of transcriptional reprogramming as a mechanism of adaptation to stress, and by the emerging potential of its pharmacological targeting. In this review we analyze the mechanisms of regulation of the therapy-induced tumor cell senescence, as well as new drug combinations aimed to prevent this clinically unfavorable phenomenon.


Assuntos
Senescência Celular , Neoplasias , Humanos , Senescência Celular/genética , Fenótipo
3.
J Mol Signal ; 8(1): 11, 2013 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-24094269

RESUMO

BACKGROUND: Insulin receptors are widely distributed in the brain, where they play roles in synaptic function, memory formation, and neuroprotection. Autophosphorylation of the receptor in response to insulin stimulation is a critical step in receptor activation. In neurons, insulin stimulation leads to a rise in mitochondrial H2O2 production, which plays a role in receptor autophosphorylation. However, the kinetic characteristics of the H2O2 signal and its functional relationships with the insulin receptor during the autophosphorylation process in neurons remain unexplored to date. RESULTS: Experiments were carried out in culture of rat cerebellar granule neurons. Kinetic study showed that the insulin-induced H2O2 signal precedes receptor autophosphorylation and represents a single spike with a peak at 5-10 s and duration of less than 30 s. Mitochondrial complexes II and, to a lesser extent, I are involved in generation of the H2O2 signal. The mechanism by which insulin triggers the H2O2 signal involves modulation of succinate dehydrogenase activity. Insulin dose-response for receptor autophosphorylation is well described by hyperbolic function (Hill coefficient, nH, of 1.1±0.1; R2=0.99). N-acetylcysteine (NAC), a scavenger of H2O2, dose-dependently inhibited receptor autophosphorylation. The observed dose response is highly sigmoidal (Hill coefficient, nH, of 8.0±2.3; R2=0.97), signifying that insulin receptor autophosphorylation is highly ultrasensitive to the H2O2 signal. These results suggest that autophosphorylation occurred as a gradual response to increasing insulin concentrations, only if the H2O2 signal exceeded a certain threshold. Both insulin-stimulated receptor autophosphorylation and H2O2 generation were inhibited by pertussis toxin, suggesting that a pertussis toxin-sensitive G protein may link the insulin receptor to the H2O2-generating system in neurons during the autophosphorylation process. CONCLUSIONS: In this study, we demonstrated for the first time that the receptor autophosphorylation occurs only if mitochondrial H2O2 signal exceeds a certain threshold. This finding provides novel insights into the mechanisms underlying neuronal response to insulin. The neuronal insulin receptor is activated if two conditions are met: 1) insulin binds to the receptor, and 2) the H2O2 signal surpasses a certain threshold, thus, enabling receptor autophosphorylation in all-or-nothing manner. Although the physiological rationale for this control remains to be determined, we propose that malfunction of mitochondrial H2O2 signaling may lead to the development of cerebral insulin resistance.

4.
BMC Pharmacol ; 8: 1, 2008 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-18215309

RESUMO

BACKGROUND: Accumulated evidence suggests that insulin resistance and impairments in cerebral insulin receptor signaling may contribute to age-related cognitive deficits and Alzheimer's disease. The enhancement of insulin receptor signaling is, therefore, a promising strategy for the treatment of age-related cognitive disorders. The mitochondrial respiratory chain, being involved in insulin-stimulated H2O2 production, has been identified recently as a potential target for the enhancement of insulin signaling. The aim of the present study is to examine: (1) whether a specific respiratory substrate, dicholine salt of succinic acid (CS), can enhance insulin-stimulated insulin receptor autophosphorylation in neurons, and (2) whether CS can ameliorate cognitive deficits of various origins in animal models. RESULTS: In a primary culture of cerebellar granule neurons, CS significantly enhanced insulin-stimulated insulin receptor autophosphorylation. In animal models, CS significantly ameliorated cognitive deficits, when administered intraperitoneally for 7 days. In 16-month-old middle-aged C57Bl/6 mice (a model of normal aging), CS enhanced spatial learning in the Morris water maze, spontaneous locomotor activity, passive avoidance performance, and increased brain N-acetylaspartate/creatine levels, as compared to the age-matched control (saline). In rats with chronic cerebral hypoperfusion, CS enhanced spatial learning, passive avoidance performance, and increased brain N-acetylaspartate/creatine levels, as compared to control rats (saline). In rats with beta-amyloid peptide-(25-35)-induced amnesia, CS enhanced passive avoidance performance and increased activity of brain choline acetyltransferase, as compared to control rats (saline). In all used models, CS effects lasted beyond the seven-day treatment period and were found to be significant about two weeks following the treatment. CONCLUSION: The results of the present study suggest that dicholine salt of succinic acid, a novel neuronal insulin sensitizer, ameliorates cognitive deficits and neuronal dysfunctions in animal models relevant to age-related cognitive impairments, vascular dementia, and Alzheimer's disease.


Assuntos
Envelhecimento/psicologia , Amnésia/prevenção & controle , Peptídeos beta-Amiloides/farmacologia , Circulação Cerebrovascular/efeitos dos fármacos , Colina/análogos & derivados , Transtornos Cognitivos/prevenção & controle , Insulina/farmacologia , Modelos Animais , Neurônios/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Ácidos Pipecólicos/farmacologia , Ácido Succínico/farmacologia , Amnésia/induzido quimicamente , Animais , Colina/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Fosforilação , Receptor de Insulina/metabolismo
5.
BMC Neurosci ; 8: 84, 2007 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-17919343

RESUMO

BACKGROUND: Accumulated evidence suggests that hydrogen peroxide (H2O2) generated in cells during insulin stimulation plays an integral role in insulin receptor signal transduction. The role of insulin-induced H2O2 in neuronal insulin receptor activation and the origin of insulin-induced H2O2 in neurons remain unclear. The aim of the present study is to test the following hypotheses (1) whether insulin-induced H2O2 is required for insulin receptor autophosphorylation in neurons, and (2) whether mitochondrial respiratory chain is involved in insulin-stimulated H2O2 production, thus playing an integral role in insulin receptor autophosphorylation in neurons. RESULTS: Insulin stimulation elicited rapid insulin receptor autophosphorylation accompanied by an increase in H2O2 release from cultured cerebellar granule neurons (CGN). N-acetylcysteine (NAC), a H2O2 scavenger, inhibited both insulin-stimulated H2O2 release and insulin-stimulated autophosphorylation of insulin receptor. Inhibitors of respiratory chain-mediated H2O2 production, malonate and carbonyl cyanide-4-(trifluoromethoxy)-phenylhydrazone (FCCP), inhibited both insulin-stimulated H2O2 release from neurons and insulin-stimulated autophosphorylation of insulin receptor. Dicholine salt of succinic acid, a respiratory substrate, significantly enhanced the effect of suboptimal insulin concentration on the insulin receptor autophosphorylation in CGN. CONCLUSION: Results of the present study suggest that insulin-induced H2O2 is required for the enhancement of insulin receptor autophosphorylation in neurons. The mitochondrial respiratory chain is involved in insulin-stimulated H2O2 production, thus playing an integral role in the insulin receptor autophosphorylation in neurons.


Assuntos
Transporte de Elétrons/fisiologia , Peróxido de Hidrogênio/metabolismo , Insulina/farmacologia , Neurônios/metabolismo , Receptor de Insulina/metabolismo , Animais , Respiração Celular/fisiologia , Células Cultivadas , Insulina/metabolismo , Insulina/fisiologia , Mitocôndrias/metabolismo , Neurônios/fisiologia , Fosforilação , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...