Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Biophys ; 4: 19, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22112852

RESUMO

BACKGROUND: Along with high affinity binding of epibatidine (Kd1≈10 pM) to α4ß2 nicotinic acetylcholine receptor (nAChR), low affinity binding of epibatidine (Kd2≈1-10 nM) to an independent binding site has been reported. Studying this low affinity binding is important because it might contribute understanding about the structure and synthesis of α4ß2 nAChR. The binding behavior of epibatidine and α4ß2 AChR raises a question about interpreting binding data from two independent sites with ligand depletion and nonspecific binding, both of which can affect equilibrium binding of [3H]epibatidine and α4ß2 nAChR. If modeled incorrectly, ligand depletion and nonspecific binding lead to inaccurate estimates of binding constants. Fitting total equilibrium binding as a function of total ligand accurately characterizes a single site with ligand depletion and nonspecific binding. The goal of this study was to determine whether this approach is sufficient with two independent high and low affinity sites. RESULTS: Computer simulations of binding revealed complexities beyond fitting total binding for characterizing the second, low affinity site of α4ß2 nAChR. First, distinguishing low-affinity specific binding from nonspecific binding was a potential problem with saturation data. Varying the maximum concentration of [3H]epibatidine, simultaneously fitting independently measured nonspecific binding, and varying α4ß2 nAChR concentration were effective remedies. Second, ligand depletion helped identify the low affinity site when nonspecific binding was significant in saturation or competition data, contrary to a common belief that ligand depletion always is detrimental. Third, measuring nonspecific binding without α4ß2 nAChR distinguished better between nonspecific binding and low-affinity specific binding under some circumstances of competitive binding than did presuming nonspecific binding to be residual [3H]epibatidine binding after adding a large concentration of cold competitor. Fourth, nonspecific binding of a heterologous competitor changed estimates of high and low inhibition constants but did not change the ratio of those estimates. CONCLUSIONS: Investigating the low affinity site of α4ß2 nAChR with equilibrium binding when ligand depletion and nonspecific binding are present likely needs special attention to experimental design and data interpretation beyond fitting total binding data. Manipulation of maximum ligand and receptor concentrations and intentionally increasing ligand depletion are potentially helpful approaches.

2.
J Biol Chem ; 280(48): 39990-40002, 2005 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-16174636

RESUMO

Models of the extracellular ligand-binding domain of nicotinic acetylcholine receptors (nAChRs), which are pentameric integral membrane proteins, are attractive for structural studies because they potentially are water-soluble and better candidates for x-ray crystallography and because their smaller size is more amenable for NMR spectroscopy. The complete N-terminal extracellular domain is a promising foundation for such models, based on previous studies of alpha7 and muscle-type subunits. Specific design requirements leading to high structural fidelity between extracellular domain nAChRs and full-length nAChRs, however, are not well understood. To study these requirements in heteromeric nAChRs, the extracellular domains of alpha4 and beta2 subunits with or without the first transmembrane domain (M1) were expressed in Xenopus oocytes and compared with alpha4beta2 nAChRs based on ligand binding and subunit assembly properties. Ligand affinities of detergent-solubilized, extracellular domain alpha4beta2 nAChRs formed from subunits with M1 were nearly identical to affinities of alpha4beta2 nAChRs when measured with [3H]epibatidine, cytisine, nicotine, and acetylcholine. Velocity sedimentation suggested that these extracellular domain nAChRs predominantly formed pentamers. The yield of these extracellular domain nAChRs was about half the yield of alpha4beta2 nAChRs. In contrast, [3H]epibatidine binding was not detected from the extracellular domain alpha4 and beta2 subunits without M1, implying no detectable expression of extracellular domain nAChRs from these subunits. These results suggest that M1 domains on both alpha4 and beta2 play an important role for efficient expression of extracellular domain alpha4beta2 nAChRs that are high fidelity structural models of full-length alpha4beta2 nAChRs.


Assuntos
Receptores Nicotínicos/química , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Membrana Celular/metabolismo , Reagentes de Ligações Cruzadas/farmacologia , Cristalografia por Raios X , DNA/química , Detergentes/farmacologia , Dimerização , Relação Dose-Resposta a Droga , Epitopos/química , Glicosilação , Humanos , Immunoblotting , Cinética , Ligantes , Espectroscopia de Ressonância Magnética , Modelos Químicos , Nicotina/química , Oócitos/metabolismo , Plasmídeos/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína , Piridinas/farmacologia , Receptores Nicotínicos/metabolismo , Fatores de Tempo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...