Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Technol Cancer Res Treat ; 15(6): NP79-NP87, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-26655145

RESUMO

PURPOSE: It is desirable that dosimetric deviations during radiation treatments are detected. Integrated transit planar dosimetry is commonly used to evaluate external beam treatments such as volumetric-modulated arc therapy. This work focuses on patient geometry changes which result in differences between the planned and the delivered radiation dose. Integrated transit planar dosimetry will average out some deviations. Novel time-resolved transit planar dosimetry compares the delivered dose of volumetric-modulated arc therapy to the planned dose at various time points. Four patient cases are shown where time-resolved transit planar dosimetry detects patient geometry changes during treatment. METHODS: A control point to control point comparison between the planned dose and the treatment dose of volumetric-modulated arc therapy beams is calculated using the planning computed tomography and the kV cone-beam computed tomography of the day and evaluated with a time-resolved γ function. Results were computed for 4 patients treated with volumetric-modulated arc therapy, each showing an anatomical change: pleural effusion, rectal gas pockets, and tumor regression. RESULTS: In all cases, the geometrical change was detected by time-resolved transit planar dosimetry, whereas integrated transit planar dosimetry showed minor or no indication of the dose discrepancy. Both tumor regression cases were detected earlier in the treatment with time-resolved planar dosimetry in comparison to integrated transit planar dosimetry. The pleural effusion and the gas pocket were detected exclusively with time-resolved transit planar dosimetry. CONCLUSIONS: Clinical cases were presented in this proof-of-principle study in which integrated transit planar dosimetry did not detect dosimetrically relevant deviations to the same extent time-resolved transit planar dosimetry was able to. Time-resolved transit planar dosimetry also provides results that can be presented as a function of arc delivery angle allowing easier interpretation compared to integrated transit planar dosimetry.


Assuntos
Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Neoplasias/radioterapia , Derrame Pleural/radioterapia , Dosagem Radioterapêutica
2.
Phys Med Biol ; 57(20): 6445-58, 2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-23001452

RESUMO

Dose delivery of a radiotherapy treatment can be influenced by a number of factors. It has been demonstrated that the electronic portal imaging device (EPID) is valuable for transit portal dosimetry verification. Patient related dose differences can emerge at any time during treatment and can be categorized in two types: (1) systematic-appearing repeatedly, (2) random-appearing sporadically during treatment. The aim of this study is to investigate how systematic and random information appears in 2D transit dose distributions measured in the EPID plane over the entire course of a treatment and how this information can be used to examine interfractional trends, building toward a methodology to support adaptive radiotherapy. To create a trend overview of the interfractional changes in transit dose, the predicted portal dose for the different beams is compared to a measured portal dose using a γ evaluation. For each beam of the delivered fraction, information is extracted from the γ images to differentiate systematic from random dose delivery errors. From the systematic differences of a fraction for a projected anatomical structures, several metrics are extracted like percentage pixels with |γ| > 1. We demonstrate for four example cases the trends and dose difference causes which can be detected with this method. Two sample prostate cases show the occurrence of a random and systematic difference and identify the organ that causes the difference. In a lung cancer case a trend is shown of a rapidly diminishing atelectasis (lung fluid) during the course of treatment, which was detected with this trend analysis method. The final example is a breast cancer case where we show the influence of set-up differences on the 2D transit dose. A method is presented based on 2D portal transit dosimetry to record dose changes throughout the course of treatment, and to allow trend analysis of dose discrepancies. We show in example cases that this method can identify the causes of dose delivery differences and that treatment adaptation can be triggered as a result. It provides an important element toward informed decision-making for adaptive radiotherapy.


Assuntos
Fracionamento da Dose de Radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Humanos , Masculino , Neoplasias/radioterapia , Radiometria , Processos Estocásticos
3.
Med Phys ; 36(1): 83-94, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19235376

RESUMO

Electronic portal imaging devices (EPIDs) are increasingly used for portal dosimetry applications. In our department, EPIDs are clinically used for two-dimensional (2D) transit dosimetry. Predicted and measured portal dose images are compared to detect dose delivery errors caused for instance by setup errors or organ motion. The aim of this work is to develop a model to predict dose-volume histogram (DVH) changes due to setup errors during breast cancer treatment using 2D transit dosimetry. First, correlations between DVH parameter changes and 2D gamma parameters are investigated for different simulated setup errors, which are described by a binomial logistic regression model. The model calculates the probability that a DVH parameter changes more than a specific tolerance level and uses several gamma evaluation parameters for the planning target volume (PTV) projection in the EPID plane as input. Second, the predictive model is applied to clinically measured portal images. Predicted DVH parameter changes are compared to calculated DVH parameter changes using the measured setup error resulting from a dosimetric registration procedure. Statistical accuracy is investigated by using receiver operating characteristic (ROC) curves and values for the area under the curve (AUC), sensitivity, specificity, positive and negative predictive values. Changes in the mean PTV dose larger than 5%, and changes in V90 and V95 larger than 10% are accurately predicted based on a set of 2D gamma parameters. Most pronounced changes in the three DVH parameters are found for setup errors in the lateral-medial direction. AUC, sensitivity, specificity, and negative predictive values were between 85% and 100% while the positive predictive values were lower but still higher than 54%. Clinical predictive value is decreased due to the occurrence of patient rotations or breast deformations during treatment, but the overall reliability of the predictive model remains high. Based on our predictive model, 2D transit dosimetry measurements can now directly be translated in clinically more relevant DVH parameter changes for the PTV during conventional breast treatment. In this way, the possibility to design decision protocols based on extracted DVH changes is created instead of undertaking elaborate actions such as repeated treatment planning or 3D dose reconstruction for a large group of patients.


Assuntos
Algoritmos , Artefatos , Neoplasias da Mama/radioterapia , Modelos Biológicos , Proteção Radiológica/métodos , Radiometria/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Carga Corporal (Radioterapia) , Simulação por Computador , Humanos , Dosagem Radioterapêutica , Eficiência Biológica Relativa , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...