Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 28(18): 3615-24, 2000 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-10982884

RESUMO

To expand the genetic code for specification of multiple non-natural amino acids, unique codons for these novel amino acids are needed. As part of a study of the potential of quadruplets as codons, the decoding of tandem UAGA quadruplets by an engineered tRNA(Leu) with an eight-base anticodon loop, has been investigated. When GCC is the codon immediately 5' of the first UAGA quadruplet, and release factor 1 is partially inactivated, the tandem UAGAs specify two leucines with an overall efficiency of at least 10%. The presence of a purine at anticodon loop position 32 of the tRNA decoding the codon 5' to the first UAGA seems to influence translation of the following codon. Another finding is intraribosomal dissociation of anticodons from codons and their re-pairing to mRNA at overlapping or nearby codons. In one case where GCC is replaced by CGG, only a single Watson-Crick base pair can form upon re-pairing when decoding is resumed. This has implications for the mechanism of some cases of programmed frameshifting.


Assuntos
Anticódon , Código Genético , RNA de Transferência de Leucina/genética , Códon , Escherichia coli/genética , Conformação de Ácido Nucleico , Proteínas/genética , RNA Mensageiro/genética , RNA de Transferência de Leucina/química
2.
J Mol Biol ; 298(2): 195-209, 2000 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-10764591

RESUMO

One of the requirements for engineering expansion of the genetic code is a unique codon which is available for specifying the new amino acid. The potential of the quadruplet UAGA in Escherichia coli to specify a single amino acid residue in the presence of a mutant tRNA(Leu) molecule containing the extra nucleotide, U, at position 33.5 of its anticodon loop has been examined. With this mRNA-tRNA combination and at least partial inactivation of release factor 1, the UAGA quadruplet specifies a leucine residue with an efficiency of 13 to 26 %. The decoding properties of tRNA(Leu) with U at position 33.5 of its eight-membered anticodon loop, and a counterpart with A at position 33.5, strongly suggest that in both cases their anticodon loop bases stack in alternative conformations. The identity of the codon immediately 5' of the UAGA quadruplet influences the efficiency of quadruplet translation via the properties of its cognate tRNA. When there is the potential for the anticodon of this tRNA to dissociate from pairing with its codon and to re-pair to mRNA at a nearby 3' closely matched codon, the efficiency of quadruplet translation at UAGA is reduced. Evidence is presented which suggests that when there is a purine base at position 32 of this 5' flanking tRNA, it influences decoding of the UAGA quadruplet.


Assuntos
Anticódon/genética , Códon/genética , Código Genético/genética , Biossíntese de Proteínas/genética , Sequência de Aminoácidos , Anticódon/química , Anticódon/metabolismo , Sequência de Bases , Códon/química , Códon/metabolismo , Códon de Terminação/genética , Evolução Molecular , Mudança da Fase de Leitura do Gene Ribossômico/genética , Genes Reporter/genética , Espectrometria de Massas , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Proteínas/química , Proteínas/genética , Sondas RNA/química , Sondas RNA/genética , Sondas RNA/metabolismo , RNA de Transferência de Leucina/química , RNA de Transferência de Leucina/genética , RNA de Transferência de Leucina/metabolismo , Análise de Sequência de Proteína , Supressão Genética/genética
3.
EMBO J ; 18(8): 2284-93, 1999 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-10205181

RESUMO

The kinetics and efficiency of decoding of the UGA of a bacterial selenoprotein mRNA with selenocysteine has been studied in vivo. A gst-lacZ fusion, with the fdhF SECIS element ligated between the two fusion partners, gave an efficiency of read-through of 4-5%; overproduction of the selenocysteine insertion machinery increased it to 7-10%. This low efficiency is caused by termination at the UGA and not by translational barriers at the SECIS. When the selenocysteine UGA codon was replaced by UCA, and tRNASec with anticodon UGA was allowed to compete with seryl-tRNASer1 for this codon, selenocysteine was found in 7% of the protein produced. When a non-cognate SelB-tRNASec complex competed with EF-Tu for a sense codon, no effects were seen, whereas a non-cognate SelB-tRNASec competing with EF-Tu-mediated Su7-tRNA nonsense suppression of UGA interfered strongly with suppression. The induction kinetics of beta-galactosidase synthesis from fdhF'-'lacZ gene fusions in the absence or presence of SelB and/or the SECIS element, showed that there was a translational pause in the fusion containing the SECIS when SelB was present. The results show that decoding of UGA is an inefficient process and that using the third dimension of the mRNA to accommodate an additional amino acid is accompanied by considerable quantitative and kinetic costs.


Assuntos
Códon , Ribossomos/metabolismo , Selenocisteína/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Primers do DNA , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Fator Tu de Elongação de Peptídeos/genética , RNA Mensageiro/química , RNA Mensageiro/genética , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Selenocisteína/genética
4.
J Bacteriol ; 180(13): 3462-6, 1998 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9642202

RESUMO

In Escherichia coli an autoregulatory mechanism of programmed ribosomal frameshifting governs the level of polypeptide chain release factor 2. From an analysis of 20 sequences of genes encoding release factor 2, we infer that this frameshift mechanism was present in a common ancestor of a large group of bacteria and has subsequently been lost in three independent lineages.


Assuntos
Bactérias/genética , Evolução Molecular , Mutação da Fase de Leitura , Fatores de Terminação de Peptídeos/genética , Filogenia , Sequência de Aminoácidos , Bactérias/classificação , Sequência de Bases , Sequência Conservada , Homeostase , Dados de Sequência Molecular , Fatores de Terminação de Peptídeos/química , Ribossomos/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
5.
J Bacteriol ; 180(12): 3144-51, 1998 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-9620964

RESUMO

The modified nucleoside 2-methylthio-N-6-isopentenyl adenosine (ms2i6A) is present in position 37 (adjacent to and 3' of the anticodon) of tRNAs that read codons beginning with U except tRNA(i.v. Ser) in Escherichia coli. In Salmonella typhimurium, 2-methylthio-N-6-(cis-hydroxy)isopentenyl adenosine (ms2io6A; also referred to as 2-methylthio cis-ribozeatin) is found in tRNA, most likely in the species that have ms2i6A in E. coli. Mutants (miaE) of S. typhimurium in which ms2i6A hydroxylation is blocked are unable to grow aerobically on the dicarboxylic acids of the citric acid cycle. Such mutants have normal uptake of dicarboxylic acids and functional enzymes of the citric acid cycle and the aerobic respiratory chain. The ability of S. typhimurium to grow on succinate, fumarate, and malate is dependent on the state of modification in position 37 of those tRNAs normally having ms2io6A37 and is not due to a second cellular function of tRNA (ms2io6A37)hydroxylase, the miaE gene product. We suggest that S. typhimurium senses the hydroxylation status of the isopentenyl group of the tRNA and will grow on succinate, fumarate, or malate only if the isopentenyl group is hydroxylated.


Assuntos
Ciclo do Ácido Cítrico , Isopenteniladenosina/análogos & derivados , RNA de Transferência/química , RNA de Transferência/genética , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Mapeamento Cromossômico , Fumaratos/metabolismo , Genes Bacterianos , Teste de Complementação Genética , Isopenteniladenosina/química , Malatos/metabolismo , Mutação , Fenótipo , RNA de Transferência/metabolismo , Salmonella typhimurium/crescimento & desenvolvimento , Ácido Succínico/metabolismo
6.
J Bacteriol ; 180(2): 359-65, 1998 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-9440525

RESUMO

An Escherichia coli mutant lacking the modified nucleotide m1G in rRNA has previously been isolated (G. R. Björk and L. A. Isaksson, J. Mol. Biol. 51:83-100, 1970). In this study, we localize the position of the m1G to nucleotide 745 in 23S rRNA and characterize a mutant deficient in this modification. This mutant shows a 40% decreased growth rate in rich media, a drastic reduction in loosely coupled ribosomes, a 20% decreased polypeptide chain elongation rate, and increased resistance to the ribosome binding antibiotic viomycin. The rrmA gene encoding 23S rRNA m1G745 methyltransferase was mapped to bp 1904000 on the E. coli chromosome and identified to be identical to the previously sequenced gene yebH.


Assuntos
Escherichia coli/genética , Metiltransferases/genética , RNA Ribossômico 23S/genética , Cromatografia Líquida de Alta Pressão , Resistência Microbiana a Medicamentos/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Teste de Complementação Genética , Testes de Sensibilidade Microbiana , Mutação , Fases de Leitura Aberta , Viomicina/farmacologia
7.
Nucleic Acids Res ; 25(20): 4093-7, 1997 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-9321663

RESUMO

We have evidence that the open reading frame previously denoted spoU is necessary for tRNA (Gm18) 2'-O-methyltransferase activity. The spoU gene is located in the gmk-rpoZ-spoT-spoU-recG operon at 82 minutes on the Escherichia coli chromosome. The deduced amino acid sequence of spoU shows strong similarities to previously characterized 2'-O-methyltransferases. Comparison of the nucleoside modification pattern of hydrolyzed tRNA, 16S rRNA and 23S rRNA from wild-type and spoU null mutants showed that the modified nucleoside 2'-O-methylguanosine (Gm), present in a subset of E. coli tRNAs at residue 18, is completely absent in the spoU mutant, suggesting that spoU encodes tRNA (Gm18) 2'-O-methyltransferase. Nucleoside modification of 16S and 23S rRNA was unaffected in the spoU mutant. Insertions in the downstream recG gene did not affect RNA modification. Absence of Gm18 in tRNA does not influence growth rate under the tested conditions and does not interfere with activity of the SupF amber suppressor, a suppressor tRNA that normally has the Gm18 modification. We suggest that the spoU gene be renamed trmH (tRNA methylation).


Assuntos
Escherichia coli/genética , Genes Bacterianos , Óperon , Pirofosfatases/genética , tRNA Metiltransferases/genética , Sequência de Aminoácidos , Genes Supressores , RNA de Transferência/genética , RNA de Transferência de Tirosina/metabolismo , Homologia de Sequência , tRNA Metiltransferases/química , tRNA Metiltransferases/metabolismo
8.
J Bacteriol ; 179(14): 4567-74, 1997 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-9226267

RESUMO

Previously, we showed that strains which have been deleted for the 21K gene (hereafter called yfjA), of the trmD operon, encoding a 21-kDa protein (21K protein) have an approximately fivefold-reduced growth rate in rich medium. Here we show that such mutants show an up to sevenfold reduced growth rate in minimal medium, a twofold-lower cell yield-to-carbon source concentration ratio, and a reduced polypeptide chain growth rate of beta-galactosidase. Suppressor mutations that increased the growth rate and translational efficiency of a delta yfjA mutant were localized to the 3' part of rpsM, encoding ribosomal protein S13. The 21K protein was shown to have affinity for free 30S ribosomal subunits but not for 70S ribosomes. Further, the 21K protein seems to contain a KH domain and a KOW motif, both suggested to be involved in binding of RNA. These findings suggest that the 21K protein is essential for a proper function of the ribosome and is involved in the maturation of the ribosomal 30S subunits or in translation initiation.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/genética , Biossíntese de Proteínas , Ribossomos/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Meios de Cultura , Metabolismo Energético , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/metabolismo , Proteínas de Escherichia coli , Dados de Sequência Molecular , Mutação , Óperon , RNA Bacteriano/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Supressão Genética
9.
J Mol Biol ; 266(4): 637-41, 1997 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-9102456

RESUMO

Selenocysteine is encoded by a UGA codon in all organisms that synthesise selenoproteins. This codon is specified as a selenocysteine codon by an mRNA secondary structure, which is located immediately 3' of the UGA in the reading frame of selenoprotein genes in Gram-negative bacteria, whereas it is located in the 3' untranslated region of eukaryal selenoprotein genes. The location and the structure of a similar mRNA signal in archaea has so far not been determined. Seven selenoproteins were identified for the archaeon Methanococcus jannaschii by labelling with 75Se and by SDS/polyacrylamide electrophoresis. Their size could be correlated with open reading frames possessing internal UGA codons from the total genomic sequence. One of the open reading frames, that of the VhuD subunit of a hydrogenase, possesses two UGA codons and appears to code for a selenoprotein with two selenocysteine residues. A strongly conserved mRNA element was identified that is exclusively linked to selenoprotein genes. It is located in the 3' untranslated region in six of the mRNAs and in the 5' untranslated region of the fdhA mRNA. This element, which is present in the 3' non-translated region of two selenoprotein mRNAs from Methanococcus voltae, is proposed to act in decoding of the UGA with selenocysteine.


Assuntos
Mathanococcus/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/genética , Selenocisteína/metabolismo , Sequência de Aminoácidos , Archaea/química , Archaea/genética , Archaea/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Sequência de Bases , Códon/genética , Eletroforese em Gel de Poliacrilamida , Mathanococcus/química , Mathanococcus/genética , Dados de Sequência Molecular , Peso Molecular , Conformação de Ácido Nucleico , Fases de Leitura Aberta/genética , Proteínas/química , Proteínas/genética , RNA Bacteriano/química , RNA Bacteriano/genética , RNA Mensageiro/química , Selenoproteínas , Alinhamento de Sequência
10.
J Mol Biol ; 274(2): 174-80, 1997 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-9398525

RESUMO

The isolation and molecular characterization of an invertebrate gene that encodes a homolog of the human selenophosphate synthetase 1 is described. This Drosophila gene, termed selD-like, is located in the cytogenetic interval 50 D/E on the right arm of chromosome 2. It is expressed ubiquitously throughout embryogenesis and found to be highly enriched in the developing gut and in the nervous system of the embryo. The SelD-like from Drosophila was purified after expression in Escherichia coli. The purified protein does not catalyze the selenide-dependent ATP hydrolysis reaction and its gene does not complement a selD lesion in E. coli. These results and the fact that selD-like possesses an arginine residue at the position of the essential Cys17 (E. coli nomenclature) indicate that the Drosophila gene exerts a function different from that of the classical selenophosphate synthetases. Two classes of SelD proteins can therefore be differentiated. The class I proteins contain a cysteine or selenocysteine residue in the active site and display selenide-dependent selenophosphate synthetase activity. Class II proteins, including Drosophila selD-like and human selenophosphate synthetase 1 are devoid of this activity and they possess other amino acids in position 17.


Assuntos
Proteínas de Drosophila , Drosophila/genética , Genes de Insetos , Proteínas de Insetos/química , Proteínas de Insetos/genética , Fosfotransferases , Compostos de Selênio/farmacologia , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Mapeamento Cromossômico , Clonagem Molecular , Drosophila/embriologia , Drosophila/enzimologia , Escherichia coli/genética , Formiato Desidrogenases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Teste de Complementação Genética , Humanos , Hibridização In Situ , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Alinhamento de Sequência , Análise de Sequência de DNA , Transformação Genética
11.
J Bacteriol ; 177(19): 5554-60, 1995 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-7559342

RESUMO

We have analyzed the essentiality or contribution to growth of each of four genes in the Escherichia coli trmD operon (rpsP, 21K, trmD, and rplS) and of the flanking genes ffh and 16K by a reverse genetic method. Mutant alleles were constructed in vitro on plasmids and transferred by recombination to the corresponding lambda phage clone (lambda 439) and from the phage clone to the E. coli chromosome. An ability to obtain recombinants only in cells carrying a complementing plasmid indicated that the mutated gene was essential, while an ability to obtain recombinants in plasmid-free cells indicated nonessentiality. In this way, Ffh, the E. coli homolog to the 54-kDa protein of the signal recognition particle of mammalian cells, and ribosomal proteins S16 and L19 were shown to be essential for viability. A deletion of the second gene, 21K, of the trmD operon reduced the growth rate of the cells fivefold, indicating that the wild-type 21-kDa protein is important for viability. A deletion-insertion in the same gene resulted in the accumulation of an assembly intermediate of the 50S ribosomal subunit, as a result of polar effects on the expression of a downstream gene, rplS, which encodes ribosomal protein L19. This finding suggests that L19, previously not considered to be an assembly protein, contributes to the assembly of the 50S ribosomal subunits. Strains deleted for the trmD gene, the third gene of the operon, encoding the tRNA (m1G37)methyltransferase (or TrmD) showed a severalfold reduced growth rate. Since such a strain grew much slower than a strain lacking the tRNA(m(1)G37) methyltransferase activity because of a point mutation, the TrmD protein might have a second function in the cell. Finally, a 16-kDa protein encoded by the gene located downstream of, and convergently transcribed to, the trmD operon was found to be nonessential and not to contribute to growth.


Assuntos
Proteínas de Bactérias/genética , Cromossomos Bacterianos/genética , Proteínas de Escherichia coli , Escherichia coli/genética , Partícula de Reconhecimento de Sinal/genética , tRNA Metiltransferases/genética , Sequência de Bases , Clonagem Molecular/métodos , Escherichia coli/crescimento & desenvolvimento , Genes Bacterianos/genética , Teste de Complementação Genética/métodos , Dados de Sequência Molecular , Óperon/genética , Recombinação Genética , Proteínas Ribossômicas/genética , Ribossomos/metabolismo , Deleção de Sequência
12.
Biochimie ; 76(12): 1152-60, 1994.
Artigo em Inglês | MEDLINE | ID: mdl-7748950

RESUMO

Isopentenyl adenosine derivatives can be found next to the anticodon (position 37) in tRNA from both the Bacteria and Eucarya domains. These modified nucleosides improve the efficiency of tRNA in translation, can increase and decrease translational fidelity, and make the tRNA less codon context sensitive. In bacteria the synthesis of isopentenyl adenosine derivatives seems to be linked to iron metabolism and central metabolic pathways.


Assuntos
Adenosina/química , RNA de Transferência , RNA de Transferência/metabolismo , RNA de Transferência/fisiologia , RNA de Transferência/química
13.
J Bacteriol ; 175(24): 7776-85, 1993 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-8253666

RESUMO

The modified nucleoside 2-methylthio-N-6-isopentenyl adenosine (ms2i6A) is present at position 37 (3' of the anticodon) of tRNAs that read codons beginning with U except tRNA(I,V Ser) in Escherichia coli. Salmonella typhimurium 2-methylthio-cis-ribozeatin (ms2io6A) is found in tRNA, probably in the corresponding species that have ms2i6A in E. coli. The gene (miaE) for the tRNA(ms2io6A)hydroxylase of S. typhimurium was isolated by complementation in E. coli. The miaE gene was localized close to the argI gene at min 99 of the S. typhimurium chromosomal map. Its DNA sequence and transcription pattern together with complementation studies revealed that the miaE gene is the second gene of a dicistronic operon. Southern blot analysis showed that the miaE gene is absent in E. coli, a finding consistent with the absence of the hydroxylated derivative of ms2i6A in this species. Mutants of S. typhimurium which have MudJ inserted in the miaE gene and which, consequently, are blocked in the ms2i6A hydroxylation reaction were isolated. Unexpectedly, such mutants cannot utilize the citric acid cycle intermediates malate, fumarate, and succinate as carbon sources.


Assuntos
Proteínas de Bactérias/genética , Genes Bacterianos , Isopenteniladenosina/análogos & derivados , Oxigenases de Função Mista/genética , RNA de Transferência/biossíntese , Salmonella typhimurium/enzimologia , Salmonella typhimurium/genética , Sequência de Aminoácidos , Proteínas de Bactérias/biossíntese , Sequência de Bases , Northern Blotting , Cromatografia Líquida de Alta Pressão , Códon , Primers do DNA , Escherichia coli/enzimologia , Escherichia coli/genética , Isopenteniladenosina/biossíntese , Oxigenases de Função Mista/biossíntese , Dados de Sequência Molecular , Mutagênese , Fases de Leitura Aberta , Óperon , Plasmídeos , Biossíntese de Proteínas , Especificidade da Espécie , Regiões Terminadoras Genéticas , Transcrição Gênica
14.
Mol Microbiol ; 8(6): 1011-6, 1993 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-7689685

RESUMO

Our knowledge of the different biological roles of tRNA modification has increased considerably in recent years. Not only have we learned about how modified nucleosides affect the performance of tRNA in translation, but also how they influence regulation of intermediary metabolism, antibiotics production, gene expression in eukaryotic viruses, cell division, cell-cycle control, u.v. sensitivity, and mutation frequency. This review summarizes our current understanding of the role of tRNA modification.


Assuntos
Nucleosídeos/metabolismo , Biossíntese de Proteínas , RNA Bacteriano/metabolismo , RNA Fúngico/metabolismo , RNA de Transferência/metabolismo , RNA Viral/metabolismo , Ciclo Celular , Genes Supressores
15.
Proc Natl Acad Sci U S A ; 89(9): 3995-8, 1992 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-1373891

RESUMO

One of the most abundant modified nucleosides in tRNA is 5-methyluridine (m5U or rT, ribothymidine). The enzyme tRNA(m5U54)methyltransferase [S-adenosyl-L-methionine:tRNA (uracil-5-)-methyltransferase, EC 2.1.1.35] (the trmA gene product) catalyzes S-adenosylmethionine-dependent methylation of the uracil in position 54 (T psi C loop) in all Escherichia coli tRNAs to form m5U. Hitherto no modified nucleoside in tRNA has been shown to be essential for growth, although their importance in fine tuning the function of tRNA is well established. In this paper, we show that the structural gene trmA is essential for viability, although the known catalytic activity of the tRNA(m5U54)methyltransferase is not.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Genes Bacterianos , RNA de Transferência/metabolismo , tRNA Metiltransferases/genética , Western Blotting , Escherichia coli/genética , Genes Letais , Mutagênese Insercional , Processamento Pós-Transcricional do RNA , RNA Bacteriano/metabolismo , tRNA Metiltransferases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...