Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 9(1): 1412, 2018 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-29651110

RESUMO

Atomic layer deposition (ALD) enables the ultrathin high-quality oxide layers that are central to all modern metal-oxide-semiconductor circuits. Crucial to achieving superior device performance are the chemical reactions during the first deposition cycle, which could ultimately result in atomic-scale perfection of the semiconductor-oxide interface. Here, we directly observe the chemical reactions at the surface during the first cycle of hafnium dioxide deposition on indium arsenide under realistic synthesis conditions using photoelectron spectroscopy. We find that the widely used ligand exchange model of the ALD process for the removal of native oxide on the semiconductor and the simultaneous formation of the first hafnium dioxide layer must be significantly revised. Our study provides substantial evidence that the efficiency of the self-cleaning process and the quality of the resulting semiconductor-oxide interface can be controlled by the molecular adsorption process of the ALD precursors, rather than the subsequent oxide formation.

2.
Nano Lett ; 15(6): 3684-91, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25927249

RESUMO

Using a scanning tunneling and atomic force microscope combined with in-vacuum atomic hydrogen cleaning we demonstrate stable scanning tunneling spectroscopy (STS) with nanoscale resolution on electrically active nanowire devices in the common lateral configuration. We use this method to map out the surface density of states on both the GaSb and InAs segments of GaSb-InAs Esaki diodes as well as the transition region between the two segments. Generally the surface shows small bandgaps centered around the Fermi level, which is attributed to a thin multielement surface layer, except in the diode transition region where we observe a sudden broadening of the bandgap. By applying a bias to the nanowire we find that the STS spectra shift according to the local nanoscale potential drop inside the wire. Importantly, this shows that we have a nanoscale probe with which we can infer both surface electronic structure and the local potential inside the nanowire and we can connect this information directly to the performance of the imaged device.


Assuntos
Nanofios/química , Microscopia de Tunelamento , Nanofios/ultraestrutura
3.
Nat Commun ; 5: 3221, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24488034

RESUMO

Nanoscale contacts between metals and semiconductors are critical for further downscaling of electronic and optoelectronic devices. However, realizing nanocontacts poses significant challenges since conventional approaches to achieve ohmic contacts through Schottky barrier suppression are often inadequate. Here we report the realization and characterization of low n-type Schottky barriers (~0.35 eV) formed at epitaxial contacts between Au-In alloy catalytic particles and GaAs-nanowires. In comparison to previous studies, our detailed characterization, employing selective electrical contacts defined by high-precision electron beam lithography, reveals the barrier to occur directly and solely at the abrupt interface between the catalyst and nanowire. We attribute this lowest-to-date-reported Schottky barrier to a reduced density of pinning states (~10(17) m(-2)) and the formation of an electric dipole layer at the epitaxial contacts. The insight into the physical mechanisms behind the observed low-energy Schottky barrier may guide future efforts to engineer abrupt nanoscale electrical contacts with tailored electrical properties.

4.
Nano Lett ; 13(11): 5182-9, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24059470

RESUMO

Utilizing semiconductor nanowires for (opto)electronics requires exact knowledge of their current-voltage properties. We report accurate on-top imaging and I-V characterization of individual as-grown nanowires, using a subnanometer resolution scanning tunneling microscope with no need for additional microscopy tools, thus allowing versatile application. We form Ohmic contacts to InP and InAs nanowires without any sample processing, followed by quantitative measurements of diameter dependent I-V properties with a very small spread in measured values compared to standard techniques.

5.
Proc Natl Acad Sci U S A ; 108(3): 1064-9, 2011 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-21199936

RESUMO

Selenoproteins, in particular thioredoxin reductase, have been implicated in countering oxidative damage occurring during aging but the molecular functions of these proteins have not been extensively investigated in different animal models. Here we demonstrate that TRXR-1 thioredoxin reductase, the sole selenoprotein in Caenorhabditis elegans, does not protect against acute oxidative stress but functions instead together with GSR-1 glutathione reductase to promote the removal of old cuticle during molting. We show that the oxidation state of disulfide groups in the cuticle is tightly regulated during the molting cycle, and that when trxr-1 and gsr-1 function is reduced, disulfide groups in the cuticle remain oxidized. A selenocysteine-to-cysteine TRXR-1 mutant fails to rescue molting defects. Furthermore, worms lacking SELB-1, the C. elegans homolog of Escherichia coli SelB or mammalian EFsec, a translation elongation factor known to be specific for selenocysteine in E. coli, fail to incorporate selenocysteine, and display the same phenotype as those lacking trxr-1. Thus, TRXR-1 function in the reduction of old cuticle is strictly selenocysteine dependent in the nematode. Exogenously supplied reduced glutathione reduces disulfide groups in the cuticle and induces apolysis, the separation of old and new cuticle, strongly suggesting that molting involves the regulated reduction of cuticle components driven by TRXR-1 and GSR-1. Using dauer larvae, we demonstrate that aged worms have a decreased capacity to molt, and decreased expression of GSR-1. Together, our results establish a function for the selenoprotein TRXR-1 and GSR-1 in the removal of old cuticle from the surface of epidermal cells.


Assuntos
Caenorhabditis elegans/fisiologia , Células Epidérmicas , Glutationa Redutase/metabolismo , Muda/fisiologia , Selenoproteínas/metabolismo , Tiorredoxina Dissulfeto Redutase/metabolismo , Fatores Etários , Animais , Western Blotting , Dissulfetos/metabolismo , Maleimidas , Oxirredução , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Selenocisteína/metabolismo
6.
Environ Microbiol ; 11(6): 1348-57, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19207573

RESUMO

Marine bacteria can cause harm to single-celled and multicellular eukaryotes. However, relatively little is known about the underlying genetic basis for marine bacterial interactions with higher organisms. We examined whole-genome sequences from a large number of marine bacteria for the prevalence of homologues to virulence genes and pathogenicity islands known from bacteria that are pathogenic to terrestrial animals and plants. As many as 60 out of 119 genomes of marine bacteria, with no known association to infectious disease, harboured genes of virulence-associated types III, IV, V and VI protein secretion systems. Type III secretion was relatively uncommon, while type IV was widespread among alphaproteobacteria (particularly among roseobacters) and type VI was primarily found among gammaproteobacteria. Other examples included homologues of the Yersinia murine toxin and a phage-related 'antifeeding' island. Analysis of the Global Ocean Sampling metagenomic data indicated that virulence genes were present in up to 8% of the planktonic bacteria, with highest values in productive waters. From a marine ecology perspective, expression of these widely distributed genes would indicate that some bacteria infect or even consume live cells, that is, generate a previously unrecognized flow of organic matter and nutrients directly from eukaryotes to bacteria.


Assuntos
Bactérias/genética , Genes Bacterianos , Água do Mar/microbiologia , Fatores de Virulência/genética , Bactérias/classificação , Bactérias/patogenicidade , Toxinas Bacterianas/genética , Frequência do Gene , Ilhas Genômicas/genética , Água do Mar/química , Via Secretória/genética
7.
RNA ; 13(8): 1245-55, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17592039

RESUMO

Transfer RNAs specific for Gln, Lys, and Glu from all organisms (except Mycoplasma) and organelles have a 2-thiouridine derivative (xm(5)s(2)U) as wobble nucleoside. These tRNAs read the A- and G-ending codons in the split codon boxes His/Gln, Asn/Lys, and Asp/Glu. In eukaryotic cytoplasmic tRNAs the conserved constituent (xm(5)-) in position 5 of uridine is 5-methoxycarbonylmethyl (mcm(5)). A protein (Tuc1p) from yeast resembling the bacterial protein TtcA, which is required for the synthesis of 2-thiocytidine in position 32 of the tRNA, was shown instead to be required for the synthesis of 2-thiouridine in the wobble position (position 34). Apparently, an ancient member of the TtcA family has evolved to thiolate U34 in tRNAs of organisms from the domains Eukarya and Archaea. Deletion of the TUC1 gene together with a deletion of the ELP3 gene, which results in the lack of the mcm(5) side chain, removes all modifications from the wobble uridine derivatives of the cytoplasmic tRNAs specific for Gln, Lys, and Glu, and is lethal to the cell. Since excess of the unmodified form of these three tRNAs rescued the double mutant elp3 tuc1, the primary function of mcm(5)s(2)U34 seems to be to improve the efficiency to read the cognate codons rather than to prevent mis-sense errors. Surprisingly, overexpression of the mcm(5)s(2)U-lacking tRNA(Lys) alone was sufficient to restore viability of the double mutant.


Assuntos
Aminoacil-RNA de Transferência/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Citoplasma/metabolismo , Dados de Sequência Molecular , Mutação , Nucleosídeos/química , Nucleosídeos/metabolismo , Aminoacil-RNA de Transferência/química , RNA de Transferência de Glutamina/química , RNA de Transferência de Glutamina/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Alinhamento de Sequência
8.
RNA ; 10(11): 1798-812, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15496525

RESUMO

The RimM protein in Escherichia coli is associated with free 30S ribosomal subunits but not with 70S ribosomes. A DeltarimM mutant is defective in 30S maturation and accumulates 17S rRNA. To study the interaction of RimM with the 30S and its involvement in 30S maturation, RimM amino acid substitution mutants were constructed. A mutant RimM (RimM-YY-->AA), containing alanine substitutions for two adjacent tyrosines within the PRC beta-barrel domain, showed a reduced binding to 30S and an accumulation of 17S rRNA compared to wild-type RimM. The (RimM-YY-->AA) and DeltarimM mutants had significantly lower amounts of polysomes and also reduced levels of 30S relative to 50S compared to a wild-type strain. A mutation in rpsS, which encodes r-protein S19, suppressed the polysome- and 16S rRNA processing deficiencies of the RimM-YY-->AA but not that of the DeltarimM mutant. A mutation in rpsM, which encodes r-protein S13, suppressed the polysome deficiency of both rimM mutants. Suppressor mutations, found in either helices 31 or 33b of 16S rRNA, improved growth of both the RimM-YY-->AA and DeltarimM mutants. However, they suppressed the 16S rRNA processing deficiency of the RimM-YY-->AA mutant more efficiently than that of the DeltarimM mutant. Helices 31 and 33b are known to interact with S13 and S19, respectively, and S13 is known to interact with S19. A GST-RimM but not a GST-RimM(YY-->AA) protein bound strongly to S19 in 30S. Thus, RimM likely facilitates maturation of the region of the head of 30S that contains S13 and S19 as well as helices 31 and 33b.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , Alanina/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Glutationa Transferase/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Estrutura Terciária de Proteína , Processamento Pós-Transcricional do RNA , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo , Proteínas de Ligação a RNA , Proteínas Recombinantes/metabolismo , Proteínas Ribossômicas/genética , Homologia de Sequência de Aminoácidos , Tirosina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...