Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 125(42): 12872-80, 2003 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-14558836

RESUMO

Light-induced deazotization of 3-diazo-3H-benzofuran-2-one (1) in solution is accompanied by facile (CO)-O bond cleavage yielding 6-(oxoethenylidene)-2,4-cyclohexadien-1-one (3), which appears with a rise time of 28 ps. The expected Wolff-rearrangement product, 7-oxabicyclo[4.2.0]octa-1,3,5-trien-8-ylidenemethanone (4), is not formed. The efficient light-induced formation of the quinonoid cumulenone 3 opens the way to determine the reactivity of a cumulenone in solution. The reaction kinetics of 3 were monitored by nanosecond flash photolysis with optical (lambda(max) approximately 460 nm) as well as Raman (1526 cm(-1)) and IR detection (2050 cm(-)(1)). Remarkably, the reactivity of 3 is that expected from its valence isomer, the cyclic carbene 3H-benzofuran-2-one-3-ylidene, 2. In aqueous solution, acid-catalyzed addition of water forms the lactone 3-hydroxy-3H-benzofuran-2-one (5). The reaction is initiated by protonation of the cumulenone on its beta-carbon atom. In hexane, cumulenone 3 dimerizes to isoxindigo ((E)-[3,3']bibenzofuranylidene-2,2'-dione, 7), coumestan (6H-benzofuro[3,2-c][1]benzopyran-6-one, 8), and a small amount of dibenzonaphthyrone ([1]benzopyrano[4,3-][1]benzopyran-5,11-dione, 9) at a nearly diffusion-controlled rate. Ab initio calculations (G3) are consistent with the observed data. Carbene 2 is predicted to have a singlet ground state, which undergoes very facile, strongly exothermic (irreversible) ring opening to the cumulenone 3. The calculated barrier to formation of 4 (Wolff-rearrangement) is prohibitive. DFT calculations indicate that protonation of 3 on the beta-carbon is accompanied by cyclization to the protonated carbene 2H(+), and that dimerization of 3 to 7 and 9 takes place in a single step with negligible activation energy.

2.
J Am Chem Soc ; 124(9): 2065-72, 2002 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-11866622

RESUMO

In this work, the aromaticity of pyracylene (2) was investigated from an energetic point of view. The standard enthalpy of hydrogenation of acenaphthylene (1) to acenaphthene (3) at 298.15 K was determined to be minus sign(114.5 +/- 4.2) kJ x mol(-1) in toluene solution and minus sign(107.9 +/- 4.2) kJ x mol(-1) in the gas phase, by combining results of combustion and reaction-solution calorimetry. A direct calorimetric measurement of the standard enthalpy of hydrogenation of pyracylene (2) to pyracene (4) in toluene at 298.15 K gave -(249.9 plus minus 4.6) kJ x mol(-1). The corresponding enthalpy of hydrogenation in the gas phase, computed from the Delta(f)H(o)m(cr) and DeltaH(o)m(sub) values obtained in this work for 2 and 4, was -(236.0 +/- 7.0) kJ x mol(-1). Molecular mechanics calculations (MM3) led to Delta(hyd)H(o)m(1,g) = -110.9 kJ x mol(-1) and Delta(hyd)H(o)m(2,g) = -249.3 kJ x mol(-1) at 298.15 K. Density functional theory calculations [B3LYP/6-311+G(3d,2p)//B3LYP/6-31G(d)] provided Delta(hyd)H(o)m(2,g) = -(244.6 +/- 8.9) kJ x mol(-1) at 298.15 K. The results are put in perspective with discussions concerning the "aromaticity" of pyracylene. It is concluded that, on energetic grounds, pyracylene is a borderline case in terms of aromaticity/antiaromaticity character.

3.
J Org Chem ; 61(19): 6733-6734, 1996 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-11667551
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...