Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Clin Med ; 13(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38673606

RESUMO

Background: Fracture healing is a very complex and well-orchestrated regenerative process involving many cell types and molecular pathways. Despite the high efficiency of this process, unsatisfying healing outcomes, such as non-union, occur for approximately 5-10% of long bone fractures. Although there is an obvious need to identify markers to monitor the healing process and to predict a potential failure in callus formation to heal the fracture, circulating bone turnover markers' (BTMs) utility as biomarkers in association with radiographic and clinical examination still lacks evidence so far. Methods: A systematic review on the association between BTMs changes and fracture healing in long bone non-union was performed following PRISMA guidelines. The research papers were identified via the PubMed, Cochrane, Cinahl, Web of Science, Scopus, and Embase databases. Studies in which the failure of fracture healing was associated with osteoporosis or genetic disorders were not included. Results: A total of 172 studies were collected and, given the inclusion criteria, 14 manuscripts were included in this review. Changes in circulating BTMs levels were detected during the healing process and across groups (healed vs. non-union patients and healthy vs. patients with non-union). However, we found high heterogeneity in patients' characteristics (fracture site, gender, and age) and in sample scheduling, which made it impossible to perform a meta-analysis. Conclusions: Clinical findings and radiographic features remain the two important components of non-union diagnosis so far. We suggest improving blood sample standardization and clinical data collection in future research to lay the foundations for the effective use of BTMs as tools for diagnosing non-union.

2.
Anticancer Res ; 44(3): 1063-1070, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38423641

RESUMO

BACKGROUND/AIM: Osteosarcoma is an aggressive malignant bone tumor, with unfavorable outcomes in patients with metastatic and recurrent disease. To improve patient survival new treatment options are needed. By using the drug repurposing approach, which takes advantage of already approved drugs with non-oncology primary use, we investigated the activity of loperamide, a peripheral opiate receptor agonist, a drug widely used in clinical practice to treat acute non-specific and chronic diarrhea, on human osteosarcoma. MATERIALS AND METHODS: Human osteosarcoma cell lines (143B, Saos-2, HOS and MG-63) and multidrug-resistant MG-63DXR30 cells were treated with loperamide. Proliferation and cell viability were determined by viable cell count and acid phosphatase assay. Loperamide activity on cell cycle and apoptosis induction were evaluated by flow cytometry and a luminescence assay testing caspase 3/7 activity, respectively. RESULTS: Loperamide significantly inhibited cell proliferation, through alteration of cell cycle profile at G0/G1 phase and apoptotic death in human osteosarcoma cells. Furthermore, loperamide significantly inhibited the growth of multidrug-resistant osteosarcoma cells. CONCLUSION: Our findings provide new perspectives for loperamide and its therapeutic repositioning for the treatment of osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Loperamida/farmacologia , Reposicionamento de Medicamentos , Osteossarcoma/tratamento farmacológico , Bioensaio , Proliferação de Células , Neoplasias Ósseas/tratamento farmacológico , Linhagem Celular Tumoral , Apoptose
3.
Stem Cell Res Ther ; 14(1): 128, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170115

RESUMO

BACKGROUND: Greater knowledge of mesenchymal stromal cell (MSC)-based therapies is driving the research into their secretome, identified as the main element responsible for their therapeutic effects. The aim of this study is to characterize the individual variability of the secretome of adipose tissue-derived MSCs (adMSCs) with regard to potential therapeutical applications in neurology. METHODS: adMSCs were isolated from the intact adipose tissue of ten subjects undergoing abdominal plastic surgery or reduction mammoplasty. Two commercial lines were also included. We analyzed the expansion rate, production, and secretion of growth factors of interest for neurological applications (VEGF-A, BDNF, PDGF-AA and AA/BB, HGF, NGF, FGF-21, GDNF, IGF-I, IGF-II, EGF and FGF-2). To correlate these characteristics with the biological effects on the cellular targets, we used individual media conditioned with adMSCs from the various donors on primary cultures of neurons/astrocytes and oligodendrocyte precursor cells (OPCs) exposed to noxious stimuli (oxygen-glucose deprivation, OGD) to evaluate their protective and promyelinating properties, using MSC medium as a control group. RESULTS: The MSC secretome showed significant individual variability within the considered population with regard to PDGF-AA, PDGF-AB/BB, VEGF-A and BDNF. None of the MSC-derived supernatants affected neuron viability in normoxia, while substantial protection by high BDNF-containing conditioned MSC medium was observed in neuronal cultures exposed to OGD conditions. In OPC cultures, the MSC-derived supernatants protected cells from OGD-induced cell death, also increasing the differentiation in mature oligodendrocytes. Neuroprotection showed a positive correlation with VEGF-A, BDNF and PDGF-AA concentrations in the culture supernatants, and an inverse correlation with HGF, while OPC differentiation following OGD was positively correlated to PDGF-AA concentration. CONCLUSIONS: Despite the limited number of adMSC donors, this study showed significant individual variability in the biological properties of interest for neurological applications for adMSC secretome, an under-researched aspect which may represent an important step in the translation of MSC-derived acellular products to clinical practice. We also showed the potential protection capability of MSC conditioned medium on neuronal and oligodendroglial lineages exposed to oxygen-glucose deprivation. These effects are directly correlated to the concentration of specific growth factors, and indicate that the remyelination should be included as a primary target in MSC-based therapies.


Assuntos
Células-Tronco Mesenquimais , Neuroproteção , Humanos , Meios de Cultivo Condicionados/farmacologia , Meios de Cultivo Condicionados/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células-Tronco Mesenquimais/metabolismo , Diferenciação Celular , Oxigênio/metabolismo
4.
Cancers (Basel) ; 15(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36831562

RESUMO

The extracellular matrix (ECM) modulates cell behavior, shape, and viability as well as mechanical properties. In recent years, ECM disregulation and aberrant remodeling has gained considerable attention in cancer targeting and prevention since it may stimulate tumorigenesis and metastasis. Here, we developed an in vitro model that aims at mimicking the in vivo tumor microenvironment by recapitulating the interactions between osteosarcoma (OS) cells and ECM with respect to cancer progression. We long-term cultured 3D OS spheroids made of metastatic or non-metastatic OS cells mixed with mesenchymal stromal cells (MSCs); confirmed the deposition of ECM proteins such as Type I collagen, Type III collagen, and fibronectin by the stromal component at the interface between tumor cells and MSCs; and found that ECM secretion is inhibited by a neutralizing anti-IL-6 antibody, suggesting a new role of this cytokine in OS ECM deposition. Most importantly, we showed that the cytotoxic effect of doxorubicin is reduced by the presence of Type I collagen. We thus conclude that ECM protein deposition is crucial for modelling and studying drug response. Our results also suggest that targeting ECM proteins might improve the outcome of a subset of chemoresistant tumors.

5.
J Extracell Biol ; 2(10): e115, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38939735

RESUMO

Cell culture-conditioned medium (CCM) is a valuable source of extracellular vesicles (EVs) for basic scientific, therapeutic and diagnostic applications. Cell culturing parameters affect the biochemical composition, release and possibly the function of CCM-derived EVs (CCM-EV). The CCM-EV task force of the Rigor and Standardization Subcommittee of the International Society for Extracellular Vesicles aims to identify relevant cell culturing parameters, describe their effects based on current knowledge, recommend reporting parameters and identify outstanding questions. While some recommendations are valid for all cell types, cell-specific recommendations may need to be established for non-mammalian sources, such as bacteria, yeast and plant cells. Current progress towards these goals is summarized in this perspective paper, along with a checklist to facilitate transparent reporting of cell culturing parameters to improve the reproducibility of CCM-EV research.

6.
Cells ; 11(5)2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35269400

RESUMO

Osteosarcoma (OS) is the most common primary bone cancer in children and adolescents. Despite aggressive treatment regimens, the outcome is unsatisfactory, and multidrug resistance (MDR) is a pivotal process in OS treatment failure. OS-derived extracellular vesicles (EVs) promote drug resistance to chemotherapy and target therapy through different mechanisms. The aim of this study was to identify subpopulations of osteosarcoma-EVs by Fourier transform infrared spectroscopy (FT-IR) to define a specific spectral signature for sensitive and multidrug-resistant OS-derived EVs. EVs were isolated from sensitive and MDR OS cells as well as from mesenchymal stem cells by differential centrifugation and ultracentrifugation. EVs size, morphology and protein expression were characterized. FT-IR/ATR of EVs spectra were acquired in the region of 400-4000 cm-1 (resolution 4 cm-1, 128 scans). The FT-IR spectra obtained were consistently different in the EVs compared to cells from which they originate. A specific spectral signature, characterized by a shift and a new band (1601 cm-1), permitted to clearly distinguish EVs isolated by sensitive and multidrug-resistant OS cells. Our data suggest that FT-IR spectroscopy allows to characterize and define a specific spectral signature for sensitive and MDR OS-derived EVs.


Assuntos
Neoplasias Ósseas , Vesículas Extracelulares , Osteossarcoma , Adolescente , Neoplasias Ósseas/metabolismo , Criança , Resistência a Múltiplos Medicamentos , Vesículas Extracelulares/metabolismo , Humanos , Osteossarcoma/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier/métodos
7.
Regen Med ; 17(5): 271-281, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35291806

RESUMO

Aim: To compare the ability of autologous platelet-rich plasma (PRP) and cord blood PRP (PRPc) to accelerate bone healing. Patients & methods: 71 patients with mechanically stable nonunion were treated weekly (3 consecutive weeks) with ultrasound-guided percutaneous injections of PRP or PRPc in a controlled randomized clinical trial. The primary outcome was healing (12 months) and secondary outcomes were radiological evolution (2 and 6 months) and changes in pain intensity (6 months). Results & conclusion: Bone consolidation was assessed over time without significant differences between PRP and PRPc treatment. In patients with persistent nonunion, pain perception decreased more after PRP treatment. PRPc appears to be a valid alternative when specific clinical conditions suggest avoiding the use of autologous blood products.


Although the regenerative capacity of bone tissue is well recognized, the fracture repair process may be impaired by unfavorable conditions resulting in delayed union or complete nonunion. In this scenario, the use of autologous blood derivates to accelerate bone healing has been proposed. The aim of this study was to compare the therapeutic efficacy of autologous platelet-rich plasma (PRP) and cord blood PRP (PRPc) in bone nonunion. PRPc contains high levels of cytokines and growth factors, has low immunogenicity and can be successfully stored until use. This study verified that bone consolidation was similar in PRP and PRPc treatments, thus supporting PRPc as a valid therapeutic option when clinical conditions discourage the use of autologous blood derivates.


Assuntos
Sangue Fetal , Plasma Rico em Plaquetas , Humanos , Medição da Dor , Resultado do Tratamento , Ultrassonografia de Intervenção , Cicatrização
9.
Cancers (Basel) ; 13(22)2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34831016

RESUMO

Osteosarcoma is the most frequent primary malignant bone tumour with an impressive tendency to metastasise. Highly proliferative tumour cells release a remarkable amount of protons into the extracellular space that activates the NF-kB inflammatory pathway in adjacent stromal cells. In this study, we further validated the correlation between tumour glycolysis/acidosis and its role in metastases. In patients, at diagnosis, we found high circulating levels of inflammatory mediators (IL6, IL8 and miR-136-5p-containing extracellular vesicles). IL6 serum levels significantly correlated with disease-free survival and 18F-FDG PET/CT uptake, an indirect measurement of tumour glycolysis and, hence, of acidosis. In vivo subcutaneous and orthotopic models, co-injected with mesenchymal stromal (MSC) and osteosarcoma cells, formed an acidic tumour microenvironment (mean pH 6.86, as assessed by in vivo MRI-CEST pH imaging). In these xenografts, we enlightened the expression of both IL6 and the NF-kB complex subunit in stromal cells infiltrating the tumour acidic area. The co-injection with MSC also significantly increased lung metastases. Finally, by using 3D microfluidic models, we directly showed the promotion of osteosarcoma invasiveness by acidosis via IL6 and MSC. In conclusion, osteosarcoma-associated MSC react to intratumoural acidosis by triggering an inflammatory response that, in turn, promotes tumour invasiveness at the primary site toward metastasis development.

10.
Biomolecules ; 11(1)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445656

RESUMO

Plant-derived exosome-like nanovesicles (EPDENs) have recently been isolated and evaluated as potential bioactive nutraceutical biomolecules. It has been hypothesized that EPDENs may exert their activity on mammalian cells through their specific cargo. In this study, we isolated and purified EPDENs from the strawberry juice of Fragaria x ananassa (cv. Romina), a new cultivar characterized by a high content of anthocyanins, folic acid, flavonols, and vitamin C and an elevated antioxidant capacity. Fragaria-derived EPDENs were purified by a series of centrifugation and filtration steps. EPDENs showed size and morphology similar to mammalian extracellular nanovesicles. The internalization of Fragaria-derived EPDENs by human mesenchymal stromal cells (MSCs) did not negatively affect their viability, and the pretreatment of MSCs with Fragaria-derived EPDENs prevented oxidative stress in a dose-dependent manner. This is possibly due to the presence of vitamin C inside the nanovesicle membrane. The analysis of EPDEN cargo also revealed the presence of small RNAs and miRNAs. These findings suggest that Fragaria-derived EPDENs may be considered nanoshuttles contained in food, with potential health-promoting activity.


Assuntos
Exossomos/metabolismo , Fragaria/metabolismo , Células-Tronco Mesenquimais/patologia , Nanopartículas/química , Estresse Oxidativo , Antioxidantes/farmacologia , Ácido Ascórbico/metabolismo , Sobrevivência Celular , Exossomos/efeitos dos fármacos , Exossomos/ultraestrutura , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , MicroRNAs/metabolismo , Nanopartículas/ultraestrutura , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Espécies Reativas de Oxigênio/metabolismo
11.
Nutrients ; 12(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33317151

RESUMO

Chronic metabolic acidosis leads to bone-remodelling disorders based on excessive mineral matrix resorption and inhibition of bone formation, but also affects the homeostasis of citrate, which is an essential player in maintaining the acid-base balance and in driving the mineralisation process. This study aimed to investigate the impact of acidosis on the osteogenic properties of bone-forming cells and the effects of citrate supplementation in restoring the osteogenic features impaired by the acidic milieu. For this purpose, human mesenchymal stromal cells were cultured in an osteogenic medium and the extracellular matrix mineralisation was analysed at the micro- and nano-level, both in neutral and acidic conditions and after treatment with calcium citrate and potassium citrate. The acidic milieu significantly decreased the citrate release and hindered the organisation of the extracellular matrix, but the citrate supplementation increased collagen production and, particularly calcium citrate, promoted the mineralisation process. Moreover, the positive effect of citrate supplementation was observed also in the physiological microenvironment. This in vitro study proves that the mineral matrix organisation is influenced by citrate availability in the microenvironment surrounding bone-forming cells, thus providing a biological basis for using citrate-based supplements in the management of bone-remodelling disorders related to chronic low-grade acidosis.


Assuntos
Acidose/tratamento farmacológico , Remodelação Óssea/efeitos dos fármacos , Quelantes de Cálcio/farmacologia , Ácido Cítrico/farmacologia , Suplementos Nutricionais , Osteogênese/efeitos dos fármacos , Equilíbrio Ácido-Base/efeitos dos fármacos , Quelantes de Cálcio/administração & dosagem , Células Cultivadas , Ácido Cítrico/administração & dosagem , Humanos , Técnicas In Vitro
12.
EMBO Mol Med ; 12(11): e11131, 2020 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-33047515

RESUMO

Sarcomas are heterogeneous and clinically challenging soft tissue and bone cancers. Although constituting only 1% of all human malignancies, sarcomas represent the second most common type of solid tumors in children and adolescents and comprise an important group of secondary malignancies. More than 100 histological subtypes have been characterized to date, and many more are being discovered due to molecular profiling. Owing to their mostly aggressive biological behavior, relative rarity, and occurrence at virtually every anatomical site, many sarcoma subtypes are in particular difficult-to-treat categories. Current multimodal treatment concepts combine surgery, polychemotherapy (with/without local hyperthermia), irradiation, immunotherapy, and/or targeted therapeutics. Recent scientific advancements have enabled a more precise molecular characterization of sarcoma subtypes and revealed novel therapeutic targets and prognostic/predictive biomarkers. This review aims at providing a comprehensive overview of the latest advances in the molecular biology of sarcomas and their effects on clinical oncology; it is meant for a broad readership ranging from novices to experts in the field of sarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Sarcoma , Neoplasias de Tecidos Moles , Adolescente , Criança , Humanos , Medicina Molecular , Sarcoma/genética , Sarcoma/terapia
14.
Front Oncol ; 9: 1342, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31850225

RESUMO

Extracellular vesicles (EVs) are heterogeneous nanosized vesicles that are constitutively released by virtually all types of cells. They have been isolated in almost all body fluids. EVs cargo consists of various molecules (nucleic acids, proteins, lipids, and metabolites), that can be found on EVs surface and/or in their lumen. EVs structure confer stability and allow the transfer of their cargo to specific cell types over a distance. EVs play a critical role in intercellular communication in physiological and pathological settings. The broadening of knowledge on EVs improved our comprehension of cancer biology as far as tumor development, growth, metastasis, chemoresistance, and treatment are concerned. Increasing evidences suggest that EVs have a significant role in osteosarcoma (OS) development, progression, and metastatic process. The modulation of inflammatory communication pathways by EVs plays a critical role in OS and in other bone-related pathological conditions such as osteoarthritis and rheumatoid arthritis. In this review we describe the emerging data on the role of extracellular vesicles in osteosarcoma and discuss the effects and function of OS-derived EVs focusing on their future applicability in clinical practice.

15.
Cancers (Basel) ; 11(6)2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195680

RESUMO

Angiogenesis involves a number of different players among which extracellular nanovesicles (EVs) have recently been proposed as an efficient cargo of pro-angiogenic mediators. Angiogenesis plays a key role in osteosarcoma (OS) development and progression. Acidity is a hallmark of malignancy in a variety of cancers, including sarcomas, as a result of an increased energetic metabolism. The aim of this study was to investigate the role of EVs derived from osteosarcoma cells on angiogenesis and whether extracellular acidity, generated by tumor metabolism, could influence EVs activity. For this purpose, we purified and characterized EVs from OS cells maintained at either acidic or neutral pH. The ability of EVs to induce angiogenesis was assessed in vitro by endothelial cell tube formation and in vivo using chicken chorioallantoic membrane. Our findings demonstrated that EVs derived from osteosarcoma cells maintained either in acidic or neutral conditions induced angiogenesis. The results showed that miRNA and protein content of EVs cargo are correlated with pro-angiogenic activity and this activity is increased by the acidity of tumor microenvironment. This study provides evidence that EVs released by human osteosarcoma cells act as carriers of active angiogenic stimuli that are able to promote endothelial cell functions relevant to angiogenesis.

16.
Front Oncol ; 9: 305, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31114753

RESUMO

Mesenchymal stromal cells (MSC) have essential functions in building and supporting the tumour microenvironment, providing metastatic niches, and maintaining cancer hallmarks, and it is increasingly evident that the study of the role of MSC in cancer is crucial for paving the way to clinical opportunities for novel anti-cancer therapies. To date, the vast majority of preclinical models that have been used for studying the effect of reactive MSC on cancer growth, metastasis, and response to therapy has been mainly based on in vitro flat biology, including the co-culturing with cell compartmentalization or with cell-to-cell contact, and on in vivo cancer models with different routes of MSC inoculation. More complex in vitro 3D models based on spheroid structures that are formed by intermingled MSC and tumour cells are also capturing the interest in cancer research. These are innovative culture systems tailored on the specific tumour type and that can be combined with a synthetic extracellular matrix, or included in in silico technologies, to more properly mimic the in vivo biological, spatial, biochemical, and biophysical features of tumour tissues. In this review, we summarized the most popular and currently available preclinical models for evaluating the role of MSC in cancer and their specific suitability, for example, in assaying the MSC-driven induction of epithelial-to-mesenchymal transition or of stem-like traits in cancer cells. Finally, we enlightened the need to carefully consider those parameters that might unintentionally strongly affect the secretome in MSC-cancer interplay and introduce confounding variables for the interpretation of results.

17.
ACS Med Chem Lett ; 10(4): 661-665, 2019 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-30996814

RESUMO

Among human carbonic anhydrase (CA) inhibitors, the α,γ-diketocarboxylic acids and esters are still poorly investigated. Here, we report the first compounds of this class (1-6) acting as potent inhibitors at low nanomolar level against the cancer-related human CA IX and XII, and 2-3 magnitude orders selective toward the cytosolic isoforms hCA I and II. At enzymatic level, the α,γ-diketoacids 1-3 were more effective inhibitors compared to the corresponding ethyl esters 4-6. The phenyl- and α-naphthyl-containing compounds (1, 3, 4, and 6) behaved as dual hCA IX/XII inhibitors, while the ß-naphthyl analogues (2 and 5) exhibited hCA IX-selective inhibition. In MG63 and HOS osteosarcoma (OS) cell lines, the ethyl esters 5 and 6 displayed dose-dependent reduction of viability and proliferation after 72 h treatment, with 6 being more potent than 5 likely for its dual hCA IX/XII inhibition.

18.
Curr Pharm Biotechnol ; 19(11): 877-885, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30332948

RESUMO

BACKGROUND: Exosome-like nanovesicles are biological nanostructures mediating cell-tocell communication and capable to load selected cargos also in the interaction among different species. OBJECTIVE: We aimed to explore the content of exosome-like nanovesicles derived from Citrus limon L. and to analyze the effects of their uptake on human cells. METHOD: We isolated exosome-like nanovesicles from Citrus limon L. juice (EXO-CLs) by differential centrifugation. EXO-CLs were analyzed for short RNA content by advanced sequencing technologies, and for ascorbic acid (vitamin C) and citrate content by enzymatic assays. EXO-CLs anti-oxidant and pro-differentiative potential was evaluated in vitro on mesenchymal stromal cells (MSC), a common tool for regenerative strategies for several human tissues. RESULTS: We showed that EXO-CLs carry detectable amounts of citrate and vitamin C and, although it was not possible to identify specific miRNAs, we detected short RNA sequences (20-30 bp) with unknown functions and with different distribution size in respect to whole Citrus limon L. juice. In vitro, EXO-CLs were uptaken by MSC and had a significant protective effect against oxidative stress. Furthermore, regarding the potential benefit for human bone health, we found that EXO-CLs modulate MSC differentiation versus the osteogenic lineage. CONCLUSION: We demonstrated that incubation with EXO-CLs exert antioxidant activity in human cells. This is most likely due to the direct delivery and uptake of micronutrients by human cells that are well preserved inside the nanovesicle membrane, including the unstable vitamin C. Based on our results, we speculate that fruit-derived nanovesicles have the potential to mediate interspecies influence after food intake.


Assuntos
Antioxidantes/farmacologia , Citrus/química , Exossomos/química , Frutas/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Antioxidantes/isolamento & purificação , Ácido Ascórbico/isolamento & purificação , Ácido Ascórbico/farmacologia , Diferenciação Celular/efeitos dos fármacos , Humanos , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Estresse Oxidativo/efeitos dos fármacos
19.
J Orthop Res ; 2018 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-29469166

RESUMO

Chondrosarcoma (CS) is a cartilage malignancy of adulthood that is treated by surgery alone, since chemotherapy is considered ineffective. Unfortunately, a large proportion of patients with CS develop lung metastases, and several die of the disease. In this study, we compared 3D-spheroid cultures and conventional cell monolayer models in order to identify the best way to select anticancer agents that could be effective for the systemic control of CS. Using SW1353 cells, we developed a three-dimensional (3D) in vitro culture model to mimic in vivo features of CS microenvironment and evaluated the efficacy of different drugs to modulate CS cell proliferation and survival in 2D versus 3D-cultures. Doxorubicin (DXR) and cisplatin, that are widely employed in sarcomas, were less effective on 3D-CS spheroids when compared to standard monolayer models, whereas treatment with the ionophore salinomycin (SAL) had a strong cytotoxic effect both on 2D and 3D-cultures. Furthermore, as demonstrated by the reduced viability and the enhanced DXR nuclear localization, SAL enhanced DXR cytotoxicity in 3D-CS spheroids also at sub-lethal doses. SAL activity on 3D-CS spheroids was mediated by a significant induction of apoptosis via caspase activation. This study demonstrates that preclinical tests significantly differ in monolayer and 3D cultures of CS cells. Using this approach, SAL, alone or, at sub-lethal concentrations, in combination with DXR, represents a promising agent for the systemic treatment of CS. © 2018 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.

20.
Stem Cell Rev Rep ; 12(6): 621-633, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27696271

RESUMO

Regulated self-consumption, also known as autophagy, is an evolutionary conserved process that degrades cellular components by directing them to the lysosomal compartment of eukaryotic cells. As a major intracellular degradation and recycling pathway, autophagy is crucial for maintaining and remodeling cellular homeostasis during normal cellular and tissue development. Recent studies have demonstrated that autophagy is necessary for the maintenance of cellular stemness and for a number of differentiation processes, including the lineage determination of mesenchymal stem cells. These are multipotent progenitor cells with self-renewal capacities that can give rise to a subset of tissues and thus hold a consistent potential in regenerative medicine. Here, we review the current literature on the complex liaison between autophagy induced by various extra- or intracellular stimuli and the molecular targets that affect mesenchymal stem cells proliferation and differentiation.


Assuntos
Autofagia , Diferenciação Celular , Células-Tronco Mesenquimais/citologia , Células-Tronco Pluripotentes/citologia , Animais , Proliferação de Células , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...