Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Wildl Dis ; 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38725305

RESUMO

Surveillance data collected in the period 2017-20 for Brucella spp. in wildlife of the Lombardy Region in northern Italy were used to describe the exposure of the wildlife species to Brucella spp. in wild boar (Sus scrofa), European brown hare (Lepus europaeus), fallow deer (Dama dama), red deer (Cervus elaphus), and roe deer (Capreolus capreolus). Among the tested species, wild boar (n=6,440) showed the highest percentage of seropositive samples (5.9%). Notably, wild boars of perifluvial area of the Po River showed higher percentages of positivity than those of the pre-Alpine district. In addition, during the hunting season in 2018, 95 organs (uterus or testes, spleen, and submandibular lymph nodes) from wild boar of the perifluvial area of the Po River were collected for bacteriological examination. Brucella suis was isolated in culture from 18.9% of tested lymph nodes. These serological and microbiological results highlight the presence of B. suis in wild boar and suggest the importance of wild boar as a reservoir for B. suis. Comparison of the spatial distribution of Brucella-seropositive wild boars with the location of backyard swine farms revealed a higher chance of contact between the two populations only in the areas where the lower percentage of seropositive samples was observed. Conversely, the high percentage of seropositive samples observed in the Po River area coupled with positive microbiological cultures suggest a greater risk of infection for the humans directly or indirectly involved in wild boar hunting activity. These results may serve as a basis to establish sound wildlife management and to adopt education campaigns aimed at reducing the risk of human infection in people involved in wild boar hunting related activities.

2.
Antibiotics (Basel) ; 11(11)2022 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-36358139

RESUMO

Poultry is the most likely source of livestock-associated Extended Spectrum Beta-Lactamase (ESBL) and plasmid-mediated AmpC (pAmpC)-producing E. coli (EC) for humans. We tested the hypothesis that farming methods have an impact on the load of ESBL/pAmpC-EC in the gut of broilers at slaughter. Isolates (n = 156) of antibiotic-free (AF), organic (O), and conventional (C) animals were characterized for antibiotic susceptibility and antibiotic resistance genes. Thirteen isolates were whole-genome sequenced. The average loads of ESBL/pAmpC-EC in cecal contents were 4.17 Log CFU/g for AF; 2.85 Log CFU/g for O; and 3.88 Log CFU/g for C type (p < 0.001). ESBL/pAmpC-EC isolates showed resistance to antibiotic classes historically used in poultry, including penicillins, tetracyclines, quinolones, and sulfonamides. Isolates from O and AF farms harbored a lower proportion of resistance to antibiotics than isolates from C farms. Among the determinants for ESBL/pAmpC, CTX-M-1 prevailed (42.7%), followed by TEM-type (29%) and SHV (19.8%). Avian pathogenic E. coli (APEC), belonging to ST117 and ST349, were identified in the collection. These data confirm the possible role of a broiler as an ESBL/AmpC EC and APEC reservoir for humans. Overall, our study suggests that antibiotic-free and organic production may contribute to a reduced exposure to ESBL/AmpC EC for the consumer.

3.
Vet Res ; 53(1): 31, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35436975

RESUMO

Trained immunity is the capacity of innate immune cells to produce an improved response against a secondary infection after a previous unrelated infection. Salmonellosis represents a public health issue and affects the pig farming industry. In general, vaccination against salmonellosis is still facing problems regarding the control of distinct serovars. Therefore, we hypothesized that an immunostimulant based on heat inactivated Mycobacterium bovis (HIMB) could have an immune training effect in pigs challenged with Salmonella enterica serovar Choleraesuis (S. Choleraesuis) and decided to explore the amplitude of this non-specific immune response. For this purpose, twenty-four 10 days-old female piglets were randomly separated in three groups: immunized group (n = 10) received orally two doses of HIMB prior to the intratracheal S. Choleraesuis-challenge, positive control group (n = 9) that was only challenged with S. Choleraesuis, and negative control group (n = 5) that was neither immunized nor infected. All individuals were necropsied 21 days post-challenge. HIMB improved weight gain and reduced respiratory symptoms and pulmonary lesions caused by S. Choleraesuis in pigs. Pigs immunized with HIMB showed higher cytokine production, especially of serum TNFα and lung CCL28, an important mediator of mucosal trained immunity. Moreover, immunized pigs showed lower levels of the biomarker of lipid oxidation malondialdehyde and higher activity of the antioxidant enzyme superoxide dismutase than untreated challenged pigs. However, the excretion and tissue colonization of S. Choleraesuis remained unaffected. This proof-of-concept study suggests beneficial clinical, pathological, and heterologous immunological effects against bacterial pathogens within the concept of trained immunity, opening avenues for further research.


Assuntos
Mycobacterium bovis , Salmonelose Animal , Salmonella enterica , Doenças dos Suínos , Animais , Feminino , Temperatura Alta , Salmonella , Salmonelose Animal/microbiologia , Suínos , Doenças dos Suínos/microbiologia , Doenças dos Suínos/prevenção & controle
4.
Int J Food Microbiol ; 314: 108391, 2020 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-31689613

RESUMO

Poultry production is the fastest growing meat sector worldwide. In the last five years, growing concerns have been expressed by international health agencies and consumers about the transmission of antibiotic-resistant bacteria from poultry meat to human. Consequently, poultry producers have adopted alternative production systems based on reduced antibiotic usage, including organic and antibiotic-free (AF) production. However, the effect of these production systems on the antibiotic resistance of the gut flora in slaughtered poultry has been poorly investigated. We hypothesized that organic and AF production systems reduce the risk of antibiotic resistance in the commensal Escherichia coli of broilers at slaughter compared with conventional production. Cecal content from broilers raised in conventional (292), AF (291), or organic (272) flocks (855 broilers in total) belonging to the same company was sampled. E. coli loads [colony-forming units (CFU/g)] and numbers of E. coli resistant to nalidixic acid (E. colinal) were determined for each sample. Antibiotic susceptibility of one isolate per sample was evaluated using the disc diffusion method; colistin resistance was determined by using the broth microdilution method. The differences in bacterial loads from the three production types were evaluated using one-way ANOVA. Differences in the proportion of resistant isolates in the three production lines were evaluated using Pearson's χ2 or Fisher's test. The strength of the association was evaluated by using odds ratio (OR), with the conventional production type as a reference (OR = 1). Overall, the analysis revealed a high level of resistance (50% or higher) to ampicillin, cefazolin, sulfonamides, nalidixic acid, and tetracycline, independently of the production type. High proportion of ciprofloxacin resistance (52%) was observed, with 4.5% isolates resistant to cefotaxime and 1.8% resistant to colistin. The average loads (log CFU/g cecal content) of E. colinal were determined as 6.84 for AF, 6.38 for organic type, and 7.27 for conventional type. The difference was significant (p < 0.00001). Interestingly, broilers from AF flocks had higher E. colinal loads than broilers from organic flocks. This trend (conventional > AF > organic) was confirmed by qualitative data. However, the magnitude of the effect, measured as a reduced risk of resistance, varied broadly for the antibiotics tested. These findings suggest that poultry production systems alternative to the conventional broiler production are associated with reduced frequency of antibiotic-resistant E. coli among the commensal gut flora, posing a lower risk to the environment and the consumer.


Assuntos
Agricultura/métodos , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Infecções por Escherichia coli/veterinária , Escherichia coli/efeitos dos fármacos , Escherichia coli/isolamento & purificação , Aves Domésticas/microbiologia , Animais , Antibacterianos/administração & dosagem , Ceco/microbiologia , Galinhas/microbiologia , Escherichia coli/crescimento & desenvolvimento , Infecções por Escherichia coli/microbiologia , Testes de Sensibilidade Microbiana
5.
BMC Vet Res ; 13(1): 284, 2017 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-28893256

RESUMO

BACKGROUND: Salmonella enterica serovar Choleraesuis (S. Choleraesuis) infection causes a systemic disease in pigs. Vaccination could represent a solution to reduce prevalence in farms. In this study, we aimed to assess the efficacy of an attenuated strain of Salmonella enterica serovar Typhimurium (S. Typhimurium ΔznuABC) against S. Choleraesuis infection. The vaccination protocol combined priming with attenuated S. Typhimurium ΔznuABC vaccine and boost with an inactivated S. Choleraesuis vaccine and we compared the protection conferred to that induced by an inactivated S. Choleraesuis vaccine. METHODS: The first group of piglets was orally vaccinated with S. Typhimurium ΔznuABC and boosted with inactivated S. Choleraesuis, the second one was intramuscularly vaccinated with S. Choleraesuis inactivated vaccine and the third group of piglets was unvaccinated. All groups of animals were challenged with a virulent S. Choleraesuis strain at day 35 post vaccination. RESULTS: The results showed that the vaccination protocol, priming with S. Typhimurium ΔznuABC and boosted with inactivated S. Choleraesuis, applied to group A was able to limit weight loss, fever and organs colonization, arising from infection with virulent S. Choleraesuis, more effectively, than the prime-boost vaccination with homologous S. Choleraesuis inactivated vaccine (group B). CONCLUSION: In conclusion, these research findings extend the validity of attenuated S. Typhimurium ΔznuABC strain as a useful mucosal vaccine against S. Typhimurium and S. Choleraesuis pig infection. The development of combined vaccination protocols can have a diffuse administration in field conditions because animals are generally infected with different concomitant serovars.


Assuntos
Salmonelose Animal/prevenção & controle , Vacinas contra Salmonella/imunologia , Salmonella typhimurium/imunologia , Doenças dos Suínos/prevenção & controle , Animais , Fezes/microbiologia , Interferon gama/metabolismo , Salmonelose Animal/microbiologia , Suínos , Doenças dos Suínos/microbiologia , Vacinação , Vacinas Atenuadas/imunologia
6.
J Glob Antimicrob Resist ; 10: 80-83, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28689922

RESUMO

OBJECTIVES: The aim of this study was to investigate the presence of plasmid-mediated colistin resistance genes in Escherichia coli from pigs affected by post-weaning diarrhoea (PWD). METHODS: DNA samples collected from 51 E. coli isolates from Italian pigs affected by PWD in 2015-2016 were studied. Isolates were classified as presumptively resistant to colistin by routine susceptibility testing and were investigated for the presence of the mcr-1 gene of plasmid origin by PCR. E. coli isolates testing negative for mcr-1 were analysed for the presence of a novel plasmid-mediated gene, mcr-2. Isolates were characterised for fimbrial [F4 (k88), F5 (k99), F6 (987P), F18 and F41] and toxin (LT, STa, STb and Stx2e) determinants by PCR as well as for the occurrence of haemolysis by phenotypic observation. Susceptibility to apramycin, cefquinome, enrofloxacin, florfenicol, gentamicin, tetracycline and trimethoprim/sulfamethoxazole (SXT) was also determined by disk diffusion. RESULTS: Most of the isolates showed the presence of at least one virulence factor, confirming their pathogenic potential. The presence of mcr-1 was shown in 37 (72.5%) of the 51 isolates. All of the mcr-1-negative isolates tested negative for the mcr-2 gene. Moreover, 80.4% of the isolates were resistant to apramycin, 9.8% to cefquinome, 54.9% to enrofloxacin, 52.9% to florfenicol, 76.5% to gentamicin, 96.1% to tetracycline and 78.4% to SXT. CONCLUSIONS: This is the first report documenting the presence of the mcr-1 gene in pathogenic E. coli isolated from pigs affected by PWD in Italy.


Assuntos
Colistina/farmacologia , Diarreia/microbiologia , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/veterinária , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Escherichia coli/genética , Doenças dos Suínos/microbiologia , Animais , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Toxinas Bacterianas/genética , DNA Bacteriano , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Farmacorresistência Bacteriana/genética , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Fímbrias Bacterianas/genética , Genes Bacterianos/genética , Hemólise , Itália , Suínos , Fatores de Virulência/genética , Desmame
7.
Vet Microbiol ; 186: 117-25, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-27016766

RESUMO

Salmonella enterica serovar Typhimurium (S. Typhimurium) is an important cause of acute food- borne zoonoses worldwide, typically carried by pigs. It is well known that Salmonella has evolved a wide array of strategies enabling it to invade the host, but little information is available on the specific host responses to Salmonella infections. In the present study, we used an in vivo approach (involving piglets infected with a virulent or an attenuated S. Typhimurium strain) coupled to histological and proteomic analysis of the cecum mucosa, to highlight the host pathways activated during S. Typhimurium infection. We confirm the complex host-pathogen interaction. Our data showed that the metabolic and the cytoskeleton organization functions were the most significantly altered. In particular, the modifications of energy metabolic pathway could suggest a "nutriprive" mechanism, in which the host reduce its metabolic and energetic status to limit Salmonella infection. This study could represent a preliminary approach, providing information useful to better understand the host-Salmonella interaction.


Assuntos
Interações Hospedeiro-Patógeno/imunologia , Salmonelose Animal/imunologia , Animais , Ceco/microbiologia , Ceco/fisiopatologia , Citoesqueleto/patologia , Regulação da Expressão Gênica/imunologia , Intestinos/imunologia , Intestinos/microbiologia , Proteoma , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Suínos , Doenças dos Suínos/imunologia
8.
Front Microbiol ; 6: 985, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26441914

RESUMO

Salmonella Typhimurium (S. Typhimurium) is responsible for foodborne zoonotic infections that, in humans, induce self-limiting gastroenteritis. The aim of this study was to evaluate whether the wild-type strain S. Typhimurium (STM14028) is able to exploit inflammation fostering an active infection. Due to the similarity between human and porcine diseases induced by S. Typhimurium, we used piglets as a model for salmonellosis and gastrointestinal research. This study showed that STM14028 is able to efficiently colonize in vitro porcine mono-macrophages and intestinal columnar epithelial (IPEC-J2) cells, and that the colonization significantly increases with LPS pre-treatment. This increase was then reversed by inhibiting the LPS stimulation through LPS antagonist, confirming an active role of LPS stimulation in STM14028-intracellular colonization. Moreover, LPS in vivo treatment increased cytokines blood level and body temperature at 4 h post infection, which is consistent with an acute inflammatory stimulus, capable to influence the colonization of STM14028 in different organs and tissues. The present study proves for the first time that in acute enteric salmonellosis, S. Typhimurium exploits inflammation for its benefit in piglets.

9.
Artigo em Inglês | MEDLINE | ID: mdl-26835435

RESUMO

Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria) normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota.


Assuntos
Antibiose , Microbioma Gastrointestinal , Inflamação , Salmonelose Animal/microbiologia , Salmonelose Animal/patologia , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/imunologia , Animais , Animais Recém-Nascidos , Suínos
10.
Metallomics ; 6(4): 845-53, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24430377

RESUMO

Zinc is an essential metal for cellular homeostasis and function in both eukaryotes and prokaryotes. To acquire this essential nutrient, bacteria employ transporters characterized by different affinity for the metal. Several studies have investigated the role of the high affinity transporter ZnuABC in the bacterial response to zinc shortage, showing that this transporter has a key role in adapting bacteria to zinc starvation. In contrast, the role of the low affinity zinc importer ZupT has been the subject of limited investigations. Here we show that a Salmonella strain lacking ZupT is impaired in its ability to grow in metal devoid environments and that a znuABC zupT strain exhibits a severe growth defect in zinc devoid media, is hypersensitive to oxidative stress and contains reduced levels of intracellular free zinc. Moreover, we show that ZupT also plays a role in the ability of S. Typhimurium to colonize the host tissues. During systemic infections, the single zupT mutant strain was attenuated only in Nramp1(+/+) mice, but competition experiments between znuABC and znuABC zupT mutants revealed that ZupT contributes to metal uptake in vivo independently of the presence of a functional Nramp1 transporter. Altogether, the here reported results show that ZupT plays an important role in Salmonella zinc homeostasis, being involved in metal import both in vitro and in infected animals.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Membrana Transportadoras/genética , Infecções por Salmonella/microbiologia , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Zinco/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Feminino , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Homeostase , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Salmonella/metabolismo , Salmonella enterica/fisiologia
11.
Vaccine ; 31(36): 3695-701, 2013 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-23770333

RESUMO

We have recently demonstrated that an attenuated strain of Salmonella enterica serovar Typhimurium unable to synthesize the zinc transporter ZnuABC (S. Typhimurium ΔznuABC), is able to protect mice against systemic and enteric salmonellosis and is safe in pigs. Here, we have tested the protective effects of S. Typhimurium ΔznuABC in pigs. Resistance to challenge with the fully virulent strain S. Typhimurium ATCC 14028 was assessed in animals vaccinated with S. Typhimurium ΔznuABC (two dosages tested), in controls vaccinated with a formalin-inactivated virulent strain and in unvaccinated controls. Clinical signs of salmonellosis, faecal shedding and bacterial colonization of organs were used to assess vaccine-induced protection. After the challenge, pigs vaccinated with the attenuated S. Typhimurium ΔznuABC strain did not display clinical signs of salmonellosis (fever or diarrhoea). The vaccine also reduced intestinal tract colonization and faecal shedding of the fully virulent Salmonella strain, as compared to control groups. S. Typhimurium ΔznuABC represents a promising candidate vaccine against salmonellosis in pigs.


Assuntos
Proteínas de Bactérias/imunologia , Proteínas de Transporte de Cátions/imunologia , Salmonelose Animal/prevenção & controle , Vacinas contra Salmonella/imunologia , Administração Oral , Animais , Proteínas de Bactérias/administração & dosagem , Derrame de Bactérias , Proteínas de Transporte de Cátions/administração & dosagem , Fezes/microbiologia , Feminino , Imunidade nas Mucosas , Interferon gama/imunologia , Mucosa Bucal/imunologia , Vacinas contra Salmonella/administração & dosagem , Salmonella typhimurium/imunologia , Salmonella typhimurium/patogenicidade , Sus scrofa , Fator de Necrose Tumoral alfa/imunologia , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia , Virulência
12.
BMC Vet Res ; 8: 201, 2012 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-23098237

RESUMO

BACKGROUND: Salmonellosis in water buffalo (Bubalus bubalis) calves is a widespread disease characterized by severe gastrointestinal lesions, profuse diarrhea and severe dehydration, occasionally exhibiting a systemic course. Several Salmonella serovars seem to be able to infect water buffalo, but Salmonella isolates collected from this animal species have been poorly characterized. In the present study, the prevalence of Salmonella spp. in water buffalo calves affected by lethal gastroenteritis was assessed, and a polyphasic characterization of isolated strains of S. Typhimurium was performed. RESULTS: The microbiological analysis of the intestinal contents obtained from 248 water buffalo calves affected by lethal gastroenteritis exhibited a significant prevalence of Salmonella spp. (25%), characterized by different serovars, most frequently Typhimurium (21%), Muenster (11%), and Give (11%). The 13 S. Typhimurium isolates were all associated with enterocolitis characterized by severe damage of the intestine, and only sporadically isolated with another possible causative agent responsible for gastroenteritis, such as Cryptosporidium spp., Rotavirus or Clostridium perfringens. Other Salmonella isolates were mostly isolated from minor intestinal lesions, and often (78% of cases) isolated with other microorganisms, mainly toxinogenic Escherichia coli (35%), Cryptosporidium spp. (20%) and Rotavirus (10%). The S. Typhimurium strains were characterized by phage typing and further genotyped by polymerase chain reaction (PCR) detection of 24 virulence genes. The isolates exhibited nine different phage types and 10 different genetic profiles. Three monophasic S. Typhimurium (B:4,12:i:-) isolates were also found and characterized, displaying three different phage types and three different virulotypes. The molecular characterization was extended to the 7 S. Muenster and 7 S. Give isolates collected, indicating the existence of different virulotypes also within these serovars. Three representative strains of S. Typhimurium were tested in vivo in a mouse model of mixed infection. The most pathogenic strain was characterized by a high number of virulence factors and the presence of the locus agfA, coding for a thin aggregative fimbria. CONCLUSIONS: These results provide evidence that Salmonella is frequently associated with gastroenteritis in water buffalo calves, particularly S. Typhimurium. Moreover, the variety in the number and distribution of different virulence markers among the collected S. Typhimurium strains suggests that within this serovar there are different pathotypes potentially responsible for different clinical syndromes.


Assuntos
Búfalos , Gastroenterite/veterinária , Intestinos/microbiologia , Salmonelose Animal/microbiologia , Animais , Feminino , Gastroenterite/microbiologia , Conteúdo Gastrointestinal/microbiologia , Camundongos , Camundongos Endogâmicos BALB C
13.
Vaccine ; 30(27): 3992-5, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22521283

RESUMO

It has been demonstrated that antibodies specific for O-PS antigen of Brucella smooth strains are involved in the protective immunity of brucellosis. Since the rough strain Brucella melitensis B115 was able to protect mice against wild Brucella strains brucellosis despite the lack of anti-OPS antibodies, in this study we evaluated the biological significance of antibodies induced by this strain, directed to antigens other than O-PS, passively tranferred to untreated mice prior to infection with Brucella abortus 2308 and B. melitensis 16M virulent strains. The protective ability of specific antisera collected from mice vaccinated with B. melitensis B115, B. abortus RB51 and B. abortus S19 strains was compared. The results indicated that antibodies induced by B115 were able to confer a satisfactory protection, especially against B. abortus 2308, similar to that conferred by the antiserum S19, while the RB51 antiserum was ineffective. These findings suggest that antibodies induced by B115 could act as opsonins as well as antibodies anti-O-PS, thus triggering more efficient internalization and degradation of bacteria within phagocytes. This is the first study assessing the efficacy of antibodies directed to antigens other than O-PS in the course of brucellosis infection.


Assuntos
Anticorpos Antibacterianos/imunologia , Vacina contra Brucelose/imunologia , Brucella abortus/imunologia , Brucella melitensis/imunologia , Brucelose/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Vacina contra Brucelose/administração & dosagem , Modelos Animais de Doenças , Feminino , Imunização Passiva , Camundongos , Camundongos Endogâmicos BALB C , Proteínas Opsonizantes/imunologia
14.
Cell Host Microbe ; 11(3): 227-39, 2012 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-22423963

RESUMO

Neutrophils are innate immune cells that counter pathogens by many mechanisms, including release of antimicrobial proteins such as calprotectin to inhibit bacterial growth. Calprotectin sequesters essential micronutrient metals such as zinc, thereby limiting their availability to microbes, a process termed nutritional immunity. We find that while calprotectin is induced by neutrophils during infection with the gut pathogen Salmonella Typhimurium, calprotectin-mediated metal sequestration does not inhibit S. Typhimurium proliferation. Remarkably, S. Typhimurium overcomes calprotectin-mediated zinc chelation by expressing a high affinity zinc transporter (ZnuABC). A S. Typhimurium znuA mutant impaired for growth in the inflamed gut was rescued in the absence of calprotectin. ZnuABC was also required to promote the growth of S. Typhimurium over that of competing commensal bacteria. Thus, our findings indicate that Salmonella thrives in the inflamed gut by overcoming the zinc sequestration of calprotectin and highlight the importance of zinc acquisition in bacterial intestinal colonization.


Assuntos
Complexo Antígeno L1 Leucocitário/metabolismo , Neutrófilos/metabolismo , Salmonelose Animal/metabolismo , Salmonella typhimurium/fisiologia , Zinco/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ceco/metabolismo , Ceco/microbiologia , Ceco/patologia , Diarreia/imunologia , Diarreia/metabolismo , Diarreia/microbiologia , Fezes/química , Fezes/microbiologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Inflamação/imunologia , Inflamação/metabolismo , Inflamação/microbiologia , Complexo Antígeno L1 Leucocitário/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ligação Proteica , Salmonelose Animal/imunologia , Salmonelose Animal/patologia , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo , Transcrição Gênica
15.
Vaccine ; 29(14): 2523-9, 2011 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-21300102

RESUMO

Brucellosis is one of the most serious zoonoses all over the world, with B. melitensis, B. abortus and B. suis being the most pathogenic species for humans. Vaccination of domesticated livestock still represents the most efficient way to prevent human infection. However, the available Brucella vaccines retain an important residual virulence and induce antibodies interfering with surveillance programs. Moreover, each vaccine shows different protective effects versus different Brucella species and different animal hosts. Nowadays, while B. melitensis and B. suis infections in cattle are emerging as a significant problem, there are no available vaccines to overcome such issue. B. melitensis strain B115, a natural, attenuated rough strain in our previous studies proved to be highly protective against B. melitensis and B. ovis infections in mice, without inducing interfering antibodies. In this study, we tested the efficiency of B115 as vaccine against B. abortus and B. suis. Vaccination of mice with 10(8) CFU/mouse of B. melitensis B115 conferred a satisfactory protection against B. abortus 2308. On the contrary, mice vaccinated once with 10(8) or 10(9) CFU/mouse of B115 were weakly protected against B. suis infection. Conversely, when mice were vaccinated twice with 10(9) CFU B115/mouse, the protective activity significantly increased. Unlike its rough phenotype, B115 showed an adequate persistence in mice accompanied to a solid humoral and cell-mediated immunity. All together, these findings suggest the potential usefulness of B115 to control brucellosis in animal hosts due to heterologous challenges.


Assuntos
Vacinas Bacterianas/imunologia , Brucella melitensis/imunologia , Brucelose/prevenção & controle , Animais , Anticorpos Antibacterianos/sangue , Carga Bacteriana , Brucella abortus/imunologia , Brucella suis/imunologia , Brucelose/imunologia , Feminino , Interferon gama/metabolismo , Camundongos , Baço/microbiologia
16.
Microbes Infect ; 12(1): 3-10, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19772948

RESUMO

Brucellosis is one of the most common bacterial zoonoses worldwide. Infection is usually chronic and sometimes lifelong. Different mechanisms can be postulated as to the basis for the induction of the chronic status of brucellosis, but a comprehensive knowledge is still lacking. Here, we carried out a series of experiments in order to assess if the persistence of Brucella abortus could be ascribed to the effect of a down regulation of the immune response due to activity of regulatory T cells. We demonstrate that CD4+CD25+T regulatory cells are able to limit the effectiveness of CD4+T cells and are able to favor the maintenance and the progression of B. abortus infection.


Assuntos
Brucella abortus/imunologia , Brucelose/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Doença Crônica , Feminino , Humanos , Tolerância Imunológica , Subunidade alfa de Receptor de Interleucina-2/imunologia , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...