Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 107(1-1): 014901, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797880

RESUMO

Using a simplified model for a non-Brownian suspension, we numerically study the response of athermal, overdamped, frictionless disks in two dimensions to isotropic and uniaxial compression, as well as to pure and simple shearing, all at finite constant strain rates ε[over ̇]. We show that isotropic and uniaxial compression result in the same jamming packing fraction ϕ_{J}, while pure-shear- and simple-shear-induced jamming occurs at a slightly higher ϕ_{J}^{*}, consistent with that found previously for simple shearing. A critical scaling analysis of pure shearing gives critical exponents consistent with those previously found for both isotropic compression and simple shearing. Using orientational order parameters for contact bond directions, we compare the anisotropy of the force and contact networks at both lowest nematic order, as well as higher 2n-fold order.

2.
Phys Rev Lett ; 129(4): 048001, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35939007

RESUMO

We experimentally measure a three-dimensional (3D) granular system's reversibility under cyclic compression. We image the grains using a refractive-index-matched fluid, then analyze the images using the artificial intelligence of variational autoencoders. These techniques allow us to track all the grains' translations and 3D rotations with accuracy sufficient to infer sliding and rolling displacements. Our observations reveal unique roles played by 3D rotational motions in granular flows. We find that rotations and contact-point motion dominate the dynamics in the bulk, far from the perturbation's source. Furthermore, we determine that 3D rotations are irreversible under cyclic compression. Consequently, contact-point sliding, which is dissipative, accumulates throughout the cycle. Using numerical simulations whose accuracy our experiment supports, we discover that much of the dissipation occurs in the bulk, where grains rotate more than they translate. Our observations suggest that the analysis of 3D rotations is needed for understanding granular materials' unique and powerful ability to absorb and dissipate energy.

3.
Phys Rev E ; 105(2-1): 024902, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35291159

RESUMO

We numerically study a three-dimensional system of athermal, overdamped, frictionless spheres, using a simplified model for a non-Brownian suspension. We compute the bulk viscosity under both uniaxial and isotropic compression as a means to address the question of whether stress-anisotropic and stress-isotropic jamming are in the same critical universality class. Carrying out a critical scaling analysis of the system pressure p, shear stress σ, and macroscopic friction µ=σ/p, as functions of particle packing fraction ϕ and compression rate ε[over ̇], we find good agreement for all critical parameters comparing the isotropic and anisotropic cases. In particular, we determine that the bulk viscosity diverges as p/ε[over ̇]∼(ϕ_{J}-ϕ)^{-ß}, with ß=3.36±0.09, as jamming is approached from below. We further demonstrate that the average contact number per particle Z can also be written in a scaling form as a function of ϕ and ε[over ̇]. Once again, we find good agreement between the uniaxial and isotropic cases. We compare our results to prior simulations and theoretical predictions.

4.
Soft Matter ; 18(6): 1174-1182, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35029257

RESUMO

There is a recent surge of interest in the behavior of active particles that can at the same time align their direction of movement and synchronize their oscillations, known as swarmalators. While theoretical and numerical models of such systems are now abundant, no real-life examples have been shown to date. We present an experimental investigation of the collective motion of the nematode Turbatrix aceti that self-propel by body undulation. We discover that these nematodes can synchronize their body oscillations, forming striking traveling metachronal waves, which produces strong fluid flows. We uncover that the location and strength of this collective state can be controlled through the shape of the confining structure; in our case the contact angle of a droplet. This opens a way for producing controlled work such as on-demand flows or displacement of objects. We illustrate this by showing that the force generated by this state is sufficient to change the physics of evaporation of fluid droplets, by counteracting the surface-tension force, which allow us to estimate its strength. The relatively large size and ease of culture make Turbatrix aceti a promising model organism for experimental investigation of swarming and oscillating active matter capable of producing controllable work.


Assuntos
Nematoides , Rhabditoidea , Animais , Movimento
5.
Phys Rev E ; 103(6-1): 062906, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34271747

RESUMO

We perform experimental and numerical studies of a granular system under cyclic compression to investigate reversibility and memory effects. We focus on the quasistatic forcing of dense systems, which is most relevant to a wide range of geophysical, industrial, and astrophysical problems. We find that soft-sphere simulations with proper stiffness and friction quantitatively reproduce both the translational and rotational displacements of the grains. We then utilize these simulations to demonstrate that such systems are capable of storing the history of previous compressions. While both mean translational and rotational displacements encode such memory, the response is fundamentally different for translations compared to rotations. For translational displacements, this memory of prior forcing depends on the coefficient of static interparticle friction, but rotational memory is not altered by the level of friction.

6.
Phys Rev E ; 103(4): L040901, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34006006

RESUMO

We study numerically a system of athermal, overdamped, frictionless spheres, as in a non-Brownian suspension, in two and three dimensions. Compressing the system isotropically at a fixed rate ε[over ̇], we investigate the critical behavior at the jamming transition. The finite compression rate introduces a control timescale, which allows one to probe the critical timescale associated with jamming. As was found previously for steady-state shear-driven jamming, we find for compression-driven jamming that pressure obeys a critical scaling relation as a function of packing fraction ϕ and compression rate ε[over ̇], and that the bulk viscosity p/ε[over ̇] diverges upon jamming. A scaling analysis determines the critical exponents associated with the compression-driven jamming transition. Our results suggest that stress-isotropic, compression-driven jamming may be in the same universality class as stress-anisotropic, shear-driven jamming.

7.
Phys Rev E ; 100(4-1): 042905, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31771010

RESUMO

We analyze reversibility of displacements and rotations of spherical grains in three-dimensional compression experiments. Using transparent acrylic beads with cylindrical holes and index matching techniques, we are not only capable of tracking displacements but also analyzing reversibility of rotations. We observe that for moderate compression amplitudes, up to one bead diameter, the translational displacements of the beads after each cycle become mostly reversible after an initial transient. By contrast, granular rotations are largely irreversible. We find a weak correlation between translational and rotational displacements, indicating that rotational reversibility depends on more subtle changes in contact distributions and contact forces between grains compared with displacement reversibility. Three-dimensional rotations in dense granular systems are particularly important, since frictional losses associated with rotations are the dominant mechanism for energy dissipation. As such our work provides a first step toward a thorough study of rotations and tangential forces to understand the granular dynamics in dense systems.

8.
Phys Rev E ; 95(3-1): 032142, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28415331

RESUMO

This study analyzes the radiation produced by a point charge intersecting the interface between a vacuum and a chiral isotropic medium. We deduce analytical expressions for the Fourier components of an electromagnetic field in both vacuum and medium for arbitrary charge velocity. The main focus is on investigating the far field in a vacuum. The distinguishing feature of the interface with a chiral isotropic medium is that the field in the vacuum area contains both copolarization (coinciding with the polarization of the self-field of a charge) and cross-polarization (orthogonal to the polarization of the self-field). Using a saddle-point approach, we obtain asymptotic representations for the field components in the far-field zone for typical frequency ranges of the Condon model of the chiral medium. We note that a so-called lateral wave is generated in a vacuum for certain parameters. The main contribution to the radiation at large distances is presented by two (co- and cross-) spherical waves of transition radiation. These waves are coherent and result in a total spherical wave with elliptical polarization, with the polarization coefficient being determined by the chirality of the medium. We present typical radiation patterns and ellipses of polarization.

9.
Phys Rev Lett ; 113(3): 038302, 2014 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-25083667

RESUMO

We show that dry active nematics, e.g., collections of shaken elongated granular particles, exhibit large-scale spatiotemporal chaos made of interacting dense, ordered, bandlike structures in a parameter region including the linear onset of nematic order. These results are obtained from the study of both the well-known (deterministic) hydrodynamic equations describing these systems and of the self-propelled particle model they were derived from. We prove, in particular, that the chaos stems from the generic instability of the band solution of the hydrodynamic equations. Revisiting the status of the strong fluctuations and long-range correlations in the particle model, we show that the giant number fluctuations observed in the chaotic phase are a trivial consequence of density segregation. However anomalous, curvature-driven number fluctuations are present in the homogeneous quasiordered nematic phase and characterized by a nontrivial scaling exponent.

10.
Phys Rev Lett ; 112(15): 158101, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24785075

RESUMO

We demonstrate that collective turbulentlike motion in a bacterial bath can power and steer the directed transport of mesoscopic carriers through the suspension. In our experiments and simulations, a microwedgelike "bulldozer" draws energy from a bacterial bath of varied density. We obtain that an optimal transport speed is achieved in the turbulent state of the bacterial suspension. This apparent rectification of random motion of bacteria is caused by polar ordered bacteria inside the cusp region of the carrier, which is shielded from the outside turbulent fluctuations.


Assuntos
Bacillus subtilis/fisiologia , Modelos Biológicos , Técnicas Bacteriológicas/métodos , Simulação por Computador , Movimento , Suspensões , Natação
11.
Phys Rev Lett ; 112(14): 148102, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24766020

RESUMO

We show that hydrodynamic theories of polar active matter generically possess inhomogeneous traveling solutions. We introduce a unifying dynamical-system framework to establish the shape of these intrinsically nonlinear patterns, and show that they correspond to those hitherto observed in experiments and numerical simulation: periodic density waves, and solitonic bands, or polar-liquid droplets both cruising in isotropic phases. We elucidate their respective multiplicity and mutual relations, as well as their existence domain.


Assuntos
Modelos Biológicos , Modelos Químicos , Simulação por Computador , Floculação , Hidrodinâmica , Soluções/química , Comportamento Espacial
12.
Artigo em Inglês | MEDLINE | ID: mdl-23944575

RESUMO

We analyze the electromagnetic field generated by a point charge moving with a constant velocity in an isotropic chiral medium. We work in the frame of the Condon dispersion model for the weak chirality and ultrarelativistic motion of the charge. We show that the field of a moving charge contains two low-frequency wave processes with right- and left-hand circular polarizations and a high-frequency wave process with a right-hand polarization. The low-frequency wave field exists at an arbitrary charge velocity and oscillates at a frequency of the order of the resonant frequency of the medium. This effect is of most importance near the charge trajectory. The high-frequency wave field arises at an ultrahigh velocity and is essential near the plane of charge dislocation for a sufficiently large offset from the trajectory. This wave field oscillates at a frequency that is considerably greater (up to several orders) than the resonant frequency of the medium. Intriguingly, both of these phenomena exist in the domain in front of the charge, thus producing the low- and high-frequency wave forerunners correspondingly.

13.
Phys Rev Lett ; 109(9): 098101, 2012 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-23002888

RESUMO

We derive a hydrodynamic description of metric-free active matter: starting from self-propelled particles aligning with neighbors defined by "topological" rules, not metric zones-a situation advocated recently to be relevant for bird flocks, fish schools, and crowds-we use a kinetic approach to obtain well-controlled nonlinear field equations. We show that the density-independent collision rate per particle characteristic of topological interactions suppresses the linear instability of the homogeneous ordered phase and the nonlinear density segregation generically present near threshold in metric models, in agreement with microscopic simulations.

14.
Phys Rev Lett ; 109(26): 268701, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-23368625

RESUMO

We derive a set of minimal and well-behaved nonlinear field equations describing the collective properties of self-propelled rods from a simple microscopic starting point, the Vicsek model with nematic alignment. Analysis of their linear and nonlinear dynamics shows good agreement with the original microscopic model. In particular, we derive an explicit expression for density-segregated, banded solutions, allowing us to develop a more complete analytic picture of the problem at the nonlinear level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...