Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(3)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36772040

RESUMO

An electrochemical sensor for the pesticide Pirimicarb (PMC) has been developed. A screen-printed electrode (SPCE) was used and modified with the conducting polymer poly (3,4-ethylenedioxythiophene) (PEDOT) and gold nanoparticles (AuNPs) to enhance electrochemical proprieties. Electrode characterizations were performed using scattering electron microscopy (SEM) and cyclic voltammetry (CV). With the SPCE/PEDOT:PSS/AuNPs modified electrode, a new peak at 1.0 V appeared in the presence of PMC related to the PMC oxidation. To elucidate the mechanism of PMC oxidation, Gas Chromatography-Mass Spectrometry (GC-MS), where two major peaks were identified, evidencing that the device can both detect and degrade PMC by an electro-oxidation process. Exploring this peak signal, it was possible the sensor development, performing detection from 93.81-750 µmol L-1, limits of quantification (LOQ) and detection (LOD) of 93.91 µmol L-1 and 28.34 µmol L-1, respectively. Thus, it was possible to study and optimization of PMC degradation, moreover, to perform detection at low concentrations and with good selectivity against different interferents using a low-cost printed electrode based on graphite modified with conductive polymer and AuNPs.

2.
Molecules ; 27(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36144512

RESUMO

Polypyrrole (PPy) is an interesting conducting polymer due to its good environmental stability, high conductivity, and biocompatibility. The association between PPy and metallic nanoparticles has been widely studied since it enhances electrochemical properties. In this context, gold ions are reduced to gold nanoparticles (AuNPs) directly on the polymer surface as PPy can be oxidized to an overoxidized state. This work proposes the PPy electrochemical synthesis followed by the direct reduction of gold on its surface in a fast reaction. The modified electrodes were characterized by electronic microscopic and infrared spectroscopy. The effect of reduction time on the electrochemical properties was evaluated by the electrocatalytic properties of the obtained material from the oxidation of ascorbic acid (AA) and electrochemical impedance spectroscopy studies. The presence of AuNPs improved the AA electrocatalysis by reducing oxidation potential and lowering charge transfer resistance. EIS data were fitted using a transmission line model. The results indicated an increase in the electronic transport of the polymeric film in the presence of AuNPs. However, PPy overoxidation occurs when the AuNPs' deposition is higher than 30 s. In PPy/AuNPs 15 s, smaller and less agglomerated particles were formed with fewer PPy overoxidized, confirming the observed electrocatalytic behavior.


Assuntos
Técnicas Biossensoriais , Nanopartículas Metálicas , Ácido Ascórbico , Técnicas Biossensoriais/métodos , Ouro/química , Íons , Polímeros/química , Pirróis/química
3.
J Therm Spray Technol ; 30(1-2): 205-221, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38624645

RESUMO

Thermally sprayed cermet coatings are adequate solutions to improve cavitation and wear resistance of hydraulic turbines made of stainless steel (SS), especially in rivers with a high sediment load, such as the Madeira River in Brazil. However, some cermets are easily dissolved in river water, leading to premature failure of the coating and costly maintenance. Moreover, galvanic corrosion induced by coupling the cermet to a SS can accelerate the coating dissolution. Therefore, the corrosion resistance of six cermets (WC-12Co, WC-10Ni, WC-10Co-4Cr, Cr3C2-25NiCr, Cr3C2-10NiCr and Cr3C2-10Ni) and the galvanic corrosion resistance of these materials coupled to CA6NM SS were evaluated in a solution that simulated Madeira River water. WC-12Co and WC-10Ni cermets exhibited the highest corrosion rates, 0.077 and 0.068 mm/year, respectively, whereas the Cr content in the WC-10Co-4Cr (0.017 mm/year) and Cr3C2-based coatings (0.005 to 0.007 mm/year) led them to corrode at slower rates. Moreover, the WC-10Co-4Cr and Cr3C2-based cermets exhibited negligible galvanic corrosion current when coupled to the CA6NM SS, making them good options to coat hydraulic turbines. In contrast, WC-12Co and WC-10Ni coatings underwent a more severe galvanic corrosion process, which would drastically reduce the lifespan of these materials as hydraulic turbine coatings.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...