Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Neurosci ; 44(17)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38514180

RESUMO

Deciding on a course of action requires both an accurate estimation of option values and the right amount of effort invested in deliberation to reach sufficient confidence in the final choice. In a previous study, we have provided evidence, across a series of judgment and choice tasks, for a dissociation between the ventromedial prefrontal cortex (vmPFC), which would represent option values, and the dorsomedial prefrontal cortex (dmPFC), which would represent the duration of deliberation. Here, we first replicate this dissociation and extend it to the case of an instrumental learning task, in which 24 human volunteers (13 women) choose between options associated with probabilistic gains and losses. According to fMRI data recorded during decision-making, vmPFC activity reflects the sum of option values generated by a reinforcement learning model and dmPFC activity the deliberation time. To further generalize the role of the dmPFC in mobilizing effort, we then analyze fMRI data recorded in the same participants while they prepare to perform motor and cognitive tasks (squeezing a handgrip or making numerical comparisons) to maximize gains or minimize losses. In both cases, dmPFC activity is associated with the output of an effort regulation model, and not with response time. Taken together, these results strengthen a general theory of behavioral control that implicates the vmPFC in the estimation of option values and the dmPFC in the energization of relevant motor and cognitive processes.


Assuntos
Imageamento por Ressonância Magnética , Córtex Pré-Frontal , Humanos , Córtex Pré-Frontal/fisiologia , Córtex Pré-Frontal/diagnóstico por imagem , Feminino , Masculino , Adulto , Adulto Jovem , Tomada de Decisões/fisiologia , Comportamento de Escolha/fisiologia , Mapeamento Encefálico/métodos , Tempo de Reação/fisiologia , Desempenho Psicomotor/fisiologia , Condicionamento Operante/fisiologia , Julgamento/fisiologia
3.
Sci Rep ; 13(1): 18173, 2023 10 24.
Artigo em Inglês | MEDLINE | ID: mdl-37875525

RESUMO

Mood effects on economic choice seem blatantly irrational, but might rise from mechanisms adapted to natural environments. We have proposed a theory in which mood helps adapting the behaviour to statistical dependencies in the environment, by biasing the expected value of foraging actions (which involve taking risk, spending time and making effort to get more reward). Here, we tested the existence of this mechanism, using an established mood induction paradigm combined with independent economic choices that opposed small but uncostly rewards to larger but costly rewards (involving either risk, delay or effort). To maximise the sensitivity to mood fluctuations, we developed an algorithm ensuring that choice options were continuously adjusted to subjective indifference points. In 102 participants tested twice, we found that during episodes of positive mood (relative to negative mood), choices were biased towards better rewarded but costly options, irrespective of the cost type. Computational modelling confirmed that the incidental mood effect was best explained by a bias added to the expected value of costly options, prior to decision making. This bias is therefore automatically applied even in artificial environments where it is not adaptive, allowing mood to spill over many sorts of decisions and generate irrational behaviours.


Assuntos
Comportamento de Escolha , Tomada de Decisões , Humanos , Simulação por Computador , Recompensa , Meio Ambiente
4.
Neurosci Biobehav Rev ; 147: 105084, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36764635

RESUMO

A stable and neutral mood (euthymia) is commended by both economic and clinical perspectives, because it enables rational decisions and avoids mental illnesses. Here we suggest, on the contrary, that a flexible mood responsive to life events may be more adaptive for natural selection, because it can help adjust the behavior to fluctuations in the environment. In our model (dubbed MAGNETO), mood represents a global expected value that biases decisions to forage for a particular reward. When flexible, mood is updated every time an action is taken, by aggregating incurred costs and obtained rewards. Model simulations show that, across a large range of parameters, flexible agents outperform cold agents (with stable neutral mood), particularly when rewards and costs are correlated in time, as naturally occurring across seasons. However, with more extreme parameters, simulations generate short manic episodes marked by incessant foraging and lasting depressive episodes marked by persistent inaction. The MAGNETO model therefore accounts for both the function of mood fluctuations and the emergence of mood disorders.


Assuntos
Transtorno Bipolar , Humanos , Transtornos do Humor , Afeto
5.
Cereb Cortex ; 33(4): 1426-1439, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-35552662

RESUMO

Confidence is typically defined as a subjective judgment about whether a decision is right. Decisions are based on sources of information that come from various cognitive domains and are processed in different brain systems. An unsettled question is whether the brain computes confidence in a similar manner whatever the domain or in a manner that would be idiosyncratic to each domain. To address this issue, human participants performed two tasks probing confidence in decisions made about the same material (history and geography statements), but based on different cognitive processes: semantic memory for deciding whether the statement was true or false, and duration perception for deciding whether the statement display was long or short. At the behavioral level, we found that the same factors (difficulty, accuracy, response time, and confidence in the preceding decision) predicted confidence judgments in both tasks. At the neural level, we observed using functional magnetic resonance imaging that confidence judgments in both tasks were associated to activity in the same brain regions: positively in the ventromedial prefrontal cortex and negatively in a prefronto-parietal network. Together, these findings suggest the existence of a shared brain system that generates confidence judgments in a similar manner across cognitive domains.


Assuntos
Encéfalo , Julgamento , Humanos , Julgamento/fisiologia , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Memória , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/fisiologia , Mapeamento Encefálico , Cognição , Imageamento por Ressonância Magnética
6.
Brain ; 146(2): 712-726, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36401873

RESUMO

Apathy is a core symptom in patients with behavioural variant frontotemporal dementia (bvFTD). It is defined by the observable reduction in goal-directed behaviour, but the underlying mechanisms are poorly understood. According to decision theory, engagement in goal-directed behaviour depends on a cost-benefit optimization trading off the estimated effort (related to the behaviour) against the expected reward (related to the goal). In this framework, apathy would thus result from either a decreased appetence for reward, or from an increased aversion to effort. Here, we phenotyped the motivational state of 21 patients with bvFTD and 40 matched healthy controls using computational analyses of behavioural responses in a comprehensive series of behavioural tasks, involving both expression of preference (comparing reward value and effort cost) and optimization of performance (adjusting effort production to the reward at stake). The primary finding was an elevated aversion to effort, consistent across preference and performance tasks in patients with bvFTD compared to controls. Within the bvFTD group, effort avoidance was correlated to cortical atrophy in the dorsal anterior cingulate cortex and to apathy score measured on a clinical scale. Thus, our results highlight elevated effort aversion (not reduced reward appetence) as a core dysfunction that might generate apathy in patients with bvFTD. More broadly, they provide novel behavioural tests and computational tools to identify the dysfunctional mechanisms producing motivation deficits in patients with brain damage.


Assuntos
Apatia , Demência Frontotemporal , Doença de Pick , Humanos , Apatia/fisiologia , Motivação , Giro do Cíngulo
8.
Nat Commun ; 13(1): 5639, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163352

RESUMO

Humans procrastinate despite being aware of potential adverse consequences. Yet, the neuro-computational mechanisms underlying procrastination remain poorly understood. Here, we use fMRI during intertemporal choice to inform a computational model that predicts procrastination behavior in independent tests. Procrastination is assessed in the laboratory as the preference for performing an effortful task on the next day as opposed to immediately, and at home as the delay taken in returning completed administrative forms. These procrastination behaviors are respectively modeled as unitary and repeated decisions to postpone a task until the next time step, based on a net expected value that integrates reward and effort attributes, both discounted with delay. The key feature that is associated with procrastination behavior across individuals (both in-lab and at-home) is the extent to which the expected effort cost (signaled by the dorsomedial prefrontal cortex) is attenuated by the delay before task completion. Thus, procrastination might stem from a cognitive bias that would make doing a task later (compared to now) appear as much less effortful but not much less rewarding.


Assuntos
Procrastinação , Comportamento de Escolha , Humanos , Córtex Pré-Frontal/diagnóstico por imagem , Recompensa , Tempo
9.
Elife ; 112022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35929412

RESUMO

To decide whether a course of action is worth pursuing, individuals typically weigh its expected costs and benefits. Optimal decision-making relies upon accurate effort cost anticipation, which is generally assumed to be performed independently from goal valuation. In two experiments (n = 46), we challenged this independence principle of standard decision theory. We presented participants with a series of treadmill routes randomly associated to monetary rewards and collected both 'accept' versus 'decline' decisions and subjective estimates of energetic cost. Behavioural results show that higher monetary prospects led participants to provide higher cost estimates, although reward was independent from effort in our design. Among candidate cognitive explanations, they support a model in which prospective cost assessment is biased by the output of an automatic computation adjusting effort expenditure to goal value. This decision bias might lead people to abandon the pursuit of valuable goals that are in fact not so costly to achieve.


Assuntos
Tomada de Decisões , Objetivos , Humanos , Motivação , Estudos Prospectivos , Recompensa
10.
Artigo em Inglês | MEDLINE | ID: mdl-35952972

RESUMO

BACKGROUND: Motivational deficit is a core clinical manifestation of depression and a strong predictor of treatment failure. However, the underlying mechanisms, which cannot be accessed through conventional questionnaire-based scoring, remain largely unknown. According to decision theory, apathy could result either from biased subjective estimates (of action costs or outcomes) or from dysfunctional processes (in making decisions or allocating resources). METHODS: Here, we combined a series of behavioral tasks with computational modeling to elucidate the motivational deficits of 35 patients with unipolar or bipolar depression under various treatments compared with 35 matched healthy control subjects. RESULTS: The most striking feature, which was observed independent of medication across preference tasks (likeability ratings and binary decisions), performance tasks (physical and mental effort exertion), and instrumental learning tasks (updating choices to maximize outcomes), was an elevated sensitivity to effort cost. By contrast, sensitivity to action outcomes (reward and punishment) and task-specific processes were relatively spared. CONCLUSIONS: These results highlight effort cost as a critical dimension that might explain multiple behavioral changes in patients with depression. More generally, they validate a test battery for computational phenotyping of motivational states, which could orientate toward specific medication or rehabilitation therapy, and thereby help pave the way for more personalized medicine in psychiatry.


Assuntos
Depressão , Recompensa , Humanos , Motivação , Tomada de Decisões , Simulação por Computador
11.
Curr Biol ; 32(16): 3564-3575.e5, 2022 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-35961314

RESUMO

Behavioral activities that require control over automatic routines typically feel effortful and result in cognitive fatigue. Beyond subjective report, cognitive fatigue has been conceived as an inflated cost of cognitive control, objectified by more impulsive decisions. However, the origins of such control cost inflation with cognitive work are heavily debated. Here, we suggest a neuro-metabolic account: the cost would relate to the necessity of recycling potentially toxic substances accumulated during cognitive control exertion. We validated this account using magnetic resonance spectroscopy (MRS) to monitor brain metabolites throughout an approximate workday, during which two groups of participants performed either high-demand or low-demand cognitive control tasks, interleaved with economic decisions. Choice-related fatigue markers were only present in the high-demand group, with a reduction of pupil dilation during decision-making and a preference shift toward short-delay and little-effort options (a low-cost bias captured using computational modeling). At the end of the day, high-demand cognitive work resulted in higher glutamate concentration and glutamate/glutamine diffusion in a cognitive control brain region (lateral prefrontal cortex [lPFC]), relative to low-demand cognitive work and to a reference brain region (primary visual cortex [V1]). Taken together with previous fMRI data, these results support a neuro-metabolic model in which glutamate accumulation triggers a regulation mechanism that makes lPFC activation more costly, explaining why cognitive control is harder to mobilize after a strenuous workday.


Assuntos
Cognição , Córtex Pré-Frontal , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Cognição/fisiologia , Tomada de Decisões/fisiologia , Glutamatos , Humanos , Córtex Pré-Frontal/fisiologia , Recompensa
12.
Elife ; 112022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35822700

RESUMO

Identifying factors whose fluctuations are associated with choice inconsistency is a major issue for rational decision theory. Here, we investigated the neuro-computational mechanisms through which mood fluctuations may bias human choice behavior. Intracerebral EEG data were collected in a large group of subjects (n=30) while they were performing interleaved quiz and choice tasks that were designed to examine how a series of unrelated feedbacks affect decisions between safe and risky options. Neural baseline activity preceding choice onset was confronted first to mood level, estimated by a computational model integrating the feedbacks received in the quiz task, and then to the weighting of option attributes, in a computational model predicting risk attitude in the choice task. Results showed that (1) elevated broadband gamma activity (BGA) in the ventromedial prefrontal cortex (vmPFC) and dorsal anterior insula (daIns) was respectively signaling periods of high and low mood, (2) increased vmPFC and daIns BGA respectively promoted and tempered risk taking by overweighting gain vs. loss prospects. Thus, incidental feedbacks induce brain states that correspond to different moods and bias the evaluation of risky options. More generally, these findings might explain why people experiencing positive (or negative) outcome in some part of their life tend to expect success (or failure) in any other.


Assuntos
Tomada de Decisões , Imageamento por Ressonância Magnética , Encéfalo , Mapeamento Encefálico , Comportamento de Escolha , Retroalimentação , Humanos , Imageamento por Ressonância Magnética/métodos , Córtex Pré-Frontal , Assunção de Riscos
13.
J Neurosci ; 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35654606

RESUMO

Deciding about courses of action involves minimizing costs and maximizing benefits. Decision neuroscience studies have implicated both the ventral and dorsal medial prefrontal cortex (vmPFC and dmPFC) in signaling goal value and action cost, but the precise functional role of these regions is still a matter of debate. Here, we suggest a more general functional partition that applies not only to decisions but also to judgments about goal value (expected reward) and action cost (expected effort). In this conceptual framework, cognitive representations related to options (reward value and effort cost) are dissociated from metacognitive representations (confidence and deliberation) related to solving the task (providing a judgment or making a choice). We used an original approach aiming at identifying consistencies across several preference tasks, from likeability ratings to binary decisions involving both attribute integration and option comparison. fMRI results in human male and female participants confirmed the vmPFC as a generic valuation system, its activity increasing with reward value and decreasing with effort cost. In contrast, more dorsal regions were not concerned with the valuation of options but with metacognitive variables, confidence being reflected in mPFC activity and deliberation time in dmPFC activity. Thus, there was a dissociation between the effort attached to choice options (represented in the vmPFC) and the effort invested in deliberation (represented in the dmPFC), the latter being expressed in pupil dilation. More generally, assessing commonalities across preference tasks might help reaching a unified view of the neural mechanisms underlying the cost/benefit tradeoffs that drive human behavior.Significance statementDecision neuroscience studies have implicated the medial prefrontal cortex (mPFC) in forming the cognitive representations that drive human choice behavior. However, different studies using different tasks have suggested somewhat inconsistent links between precise computational variables and specific brain regions. Here, we use fMRI to demonstrate a robust functional partition of the mPFC that generalizes across tasks involving an estimation of goal value and/or action cost to provide a judgement or make a choice. This general functional partition makes a critical dissociation between neural representations of decisional factors (the expected costs and benefits attached to a given option) and metacognitive estimates (confidence in the judgment or choice, and effort invested in the deliberation process).

14.
JMIR Res Protoc ; 11(6): e38027, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35704381

RESUMO

BACKGROUND: The growing interest of the scientific community in trail running has highlighted the acute effects of practice at the time of these races on isolated aspects of physiological and structural systems; biological, physiological, cognitive, and muscular functions; and the psychological state of athletes. However, no integrative study has been conducted under these conditions with so many participants and monitoring of pre-, per-, and postrace variables for up to 10 days over a distance close to 100 miles. OBJECTIVE: The aim of this study was to evaluate the kinetics of the performance parameters during a 156 km trail run and 6000 m of elevation gain in pre-, per-, and postrace conditions. The general hypothesis is based on significant alterations in the psychological, physiological, mechanical, biological, and cognitive parameters. METHODS: The Trail Scientifique de Clécy took place on November 11, 2021. This prospective experimental study provides a comprehensive exploration of the constraints and adaptations of psychophysiological and sociological variables assessed in real race conditions during a trail running of 156 km on hilly ground and 6000 m of elevation gain (D+). The study protocol allowed for repeatability of study measurements under the same experimental conditions during the race, with the race being divided into 6 identical loops of 26 km and 1000 m D+. Measurements were conducted the day before and the morning of the race, at the end of each lap, after a pit stop, and up to 10 days after the race. A total of 55 participants were included, 43 (78%) men and 12 (22%) women, who were experienced in ultra-trail-running events and with no contraindications to the practice of this sport. RESULTS: The launch of the study was authorized on October 26, 2021, under the trial number 21-0166 after a favorable opinion from the Comité de Protection des Personnes Ouest III (21.09.61/SIRIPH 2G 21.01586.000009). Of the 55 runners enrolled, 41 (75%) completed the race and 14 (25%) dropped out for various reasons, including gastric problems, hypothermia, fatigue, and musculoskeletal injuries. All the measurements for each team were completed in full. The race times (ie, excluding the measurements) ranged from 17.8206 hours for the first runner to 35.9225 hours for the last runner. The average time to complete all measurements for each lap was 64 (SD 3) minutes. CONCLUSIONS: The Trail Scientifique de Clécy, by its protocol, allowed for a multidisciplinary approach to the discipline. This approach will allow for the explanation of the studied parameters in relation to each other and observation of the systems of dependence and independence. The initial results are expected in June 2022. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR1-10.2196/38027.

15.
Schizophr Bull ; 48(5): 1094-1103, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751516

RESUMO

BACKGROUND AND HYPOTHESIS: Motivation deficit is a hallmark of schizophrenia that has a strong impact on their daily life. An alteration of reward processing has been repeatedly highlighted in schizophrenia, but to what extent it involves a deficient amplification of reward representation through conscious processing remains unclear. Indeed, patients with schizophrenia exhibit a disruption of conscious processing, whereas unconscious processing appears to be largely preserved. STUDY DESIGN: To further explore the nature of motivational deficit in schizophrenia and the implication of consciousness disruption in this symptom, we used a masking paradigm testing motivation both under conscious and unconscious conditions in patients with schizophrenia (n = 31) and healthy controls (n = 32). Participants were exposed to conscious or subliminal coin pictures representing money at stake and were subsequently asked to perform an effort-task by squeezing a handgrip as hard as possible to win this reward. STUDY RESULTS: We observed a preserved effect of unconscious monetary rewards on force production in both groups, without any significant difference between them. By contrast, in the conscious condition, patients with schizophrenia were less sensitive to rewards than controls. Our results confirm that unconscious incentives have effects on exerted forces in the general population, and demonstrate that patients with schizophrenia exhibit a dissociation between an impaired conscious motivation and a preserved unconscious motivation. CONCLUSIONS: These findings suggest the existence of several steps in motivational processes that can be differentially affected and might have implication for patient care.


Assuntos
Esquizofrenia , Estado de Consciência , Força da Mão , Humanos , Motivação , Recompensa
16.
Brain Commun ; 4(3): fcac111, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35611304

RESUMO

Myotonic dystrophy type 1 is an autosomal dominant multisystemic disorder affecting muscular and extra muscular systems, including the central nervous system. Cerebral involvement in myotonic dystrophy type 1 is associated with subtle cognitive and behavioural disorders, of major impact on socio-professional adaptation. The social dysfunction and its potential relation to frontal lobe neuropsychology remain under-evaluated in this pathology. The neuroanatomical network underpinning that disorder is yet to disentangle. Twenty-eight myotonic dystrophy type 1 adult patients (mean age: 46 years old) and 18 age and sex-matched healthy controls were included in the study. All patients performed an exhaustive neuropsychological assessment with a specific focus on frontal lobe neuropsychology (motivation, social cognition and executive functions). Among them, 18 myotonic dystrophy type 1 patients and 18 healthy controls had a brain MRI with T1 and T2 Flair sequences. Grey matter segmentation, Voxel-based morphometry and cortical thickness estimation were performed with Statistical Parametric Mapping Software SPM12 and Freesurfer software. Furthermore, T2 white matter lesions and subcortical structures were segmented with Automated Volumetry Software. Most patients showed significant impairment in executive frontal functions (auditory working memory, inhibition, contextualization and mental flexibility). Patients showed only minor difficulties in social cognition tests mostly in cognitive Theory of Mind, but with relative sparing of affective Theory of Mind and emotion recognition. Neuroimaging analysis revealed atrophy mostly in the parahippocampal and hippocampal regions and to a lesser extent in basal ganglia, regions involved in social navigation and mental flexibility, respectively. Social cognition scores were correlated with right parahippocampal gyrus atrophy. Social dysfunction in myotonic dystrophy type 1 might be a consequence of cognitive impairment regarding mental flexibility and social contextualization rather than a specific social cognition deficit such as emotion recognition. We suggest that both white matter lesions and grey matter disease could account for this social dysfunction, involving, in particular, the frontal-subcortical network and the hippocampal/arahippocampal regions, brain regions known, respectively, to integrate contextualization and social navigation.

17.
Cortex ; 151: 281-293, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35462205

RESUMO

Fatigue is a frequent symptom in many clinical conditions that is still poorly understood despite having a major impact on quality of life. Here, we propose a novel approach using model-based analysis of choice behaviour to extract fatigue markers. We applied this approach to the case of low-grade glioma, with the aim of testing the hypothesis that fatigability in this condition may manifest as limited control over choice impulsivity. Patients with intact or resected glioma (n = 29) and matched healthy controls (n = 27) performed a series of behavioural tasks included in a 4 h-long neuropsychological assessment. Intertemporal choices, opposing smaller-sooner to larger-later monetary rewards, were intermixed with tasks designed to test cognitive and motor performance and to assess perceived fatigue with subjective ratings. All dependent variables were analysed with generalised linear models testing the main effects of group and time-on-task, as well as their interaction. While absent in standard measures of fatigue (subjective rating and objective performance), a significant group-by-time interaction was observed in the rate of impulsive choices: contrary to controls, patients developed a preference for the smaller-sooner option in the course of neuropsychological assessment. This preference shift was captured by computational modelling as an increase in the present bias, a parameter that assigns an additive bonus to immediate rewards. Thus, choice impulsivity was the only reliable marker that reflected the enhanced fatigability of patients relative to controls. These results suggest that the impact of glioma (or its resection) on brain functioning limits the exertion of cognitive control during decision-making. More generally, they pave the way to using model-based analysis of choice behaviour for future investigations of the many clinical conditions plagued with cognitive fatigue.


Assuntos
Glioma , Qualidade de Vida , Comportamento de Escolha , Cognição , Glioma/complicações , Humanos , Comportamento Impulsivo , Recompensa
18.
Transl Psychiatry ; 11(1): 463, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493707

RESUMO

Autism is a neurodevelopmental condition defined on clinical criteria related to diminished social reciprocity and stereotyped behavior. An influential view explains autism as a social motivation disorder characterized by less attention paid to the social environment and less pleasure experienced with social rewards. However, experimental attempts to validate this theory, by testing the impact of social reward on behavioral choice and brain activity, has yielded mixed results, possibly due to variations in how explicit instructions were about task goals. Here, we specified the putative motivation deficit as an absence of spontaneous valuation in the social domain, unexplained by inattention and correctible by explicit instruction. Since such deficit cannot be assessed with behavioral measures, we used functional neuroimaging (fMRI) to readout covert subjective values, assigned to social and nonsocial stimuli (faces and objects), either explicitly asked to participants (during a likeability judgment task) or not (during age or size estimation tasks). Value-related neural activity observed for objects, or for faces under explicit instructions, was very similar in autistic and control participants, with an activation peak in the ventromedial prefrontal cortex (vmPFC), known as a key node of the brain valuation system. The only difference observed in autistic participants was an absence of the spontaneous valuation normally triggered by faces, even when they were attended for age estimation. Our findings, therefore, suggest that in autism, social stimuli might fail to trigger the automatic activation of the brain valuation system.


Assuntos
Transtorno Autístico , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Recompensa
19.
Nat Commun ; 12(1): 3344, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-34099678

RESUMO

Whether maximizing rewards and minimizing punishments rely on distinct brain systems remains debated, given inconsistent results coming from human neuroimaging and animal electrophysiology studies. Bridging the gap across techniques, we recorded intracerebral activity from twenty participants while they performed an instrumental learning task. We found that both reward and punishment prediction errors (PE), estimated from computational modeling of choice behavior, correlate positively with broadband gamma activity (BGA) in several brain regions. In all cases, BGA scaled positively with the outcome (reward or punishment versus nothing) and negatively with the expectation (predictability of reward or punishment). However, reward PE were better signaled in some regions (such as the ventromedial prefrontal and lateral orbitofrontal cortex), and punishment PE in other regions (such as the anterior insula and dorsolateral prefrontal cortex). These regions might therefore belong to brain systems that differentially contribute to the repetition of rewarded choices and the avoidance of punished choices.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/patologia , Punição , Recompensa , Adulto , Animais , Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Mapeamento Encefálico , Neurociência Cognitiva , Condicionamento Operante , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem , Córtex Pré-Frontal/fisiologia
20.
Behav Neurosci ; 135(2): 108, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34060868

RESUMO

This special issue, commissioned after the 4th Quadrennial Meeting on Orbitofrontal Cortex Function held in Paris in November of 2019 (https://ofc2019.sciencesconf.org/), is intended to provide a snapshot of this ongoing transformation; we hope that the ideas presented herein will provide a foundation for the next stage in the evolution of our understanding of this magical brain region. (PsycInfo Database Record (c) 2021 APA, all rights reserved).


Assuntos
Córtex Pré-Frontal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...