Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6835, 2023 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-37884562

RESUMO

Major depressive disorder (MDD) is one of the most important causes of disability worldwide. While recent work provides insights into the molecular alterations in the brain of patients with MDD, whether these molecular signatures can be associated with the expression of specific symptom domains remains unclear. Here, we identified sex-specific gene modules associated with the expression of MDD, combining differential gene expression and co-expression network analyses in six cortical and subcortical brain regions. Our results show varying levels of network homology between males and females across brain regions, although the associations between these structures and the expression of MDD remain highly sex specific. We refined these associations to several symptom domains and identified transcriptional signatures associated with distinct functional pathways, including GABAergic and glutamatergic neurotransmission, metabolic processes and intracellular signal transduction, across brain regions associated with distinct symptomatic profiles in a sex-specific fashion. In most cases, these associations were specific to males or to females with MDD, although a subset of gene modules associated with common symptomatic features in both sexes were also identified. Together, our findings suggest that the expression of distinct MDD symptom domains associates with sex-specific transcriptional structures across brain regions.


Assuntos
Transtorno Depressivo Maior , Masculino , Humanos , Feminino , Depressão/genética , Encéfalo/metabolismo , Transmissão Sináptica , Transdução de Sinais , Imageamento por Ressonância Magnética
2.
Microorganisms ; 11(7)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37512842

RESUMO

Candida albicans is a commensal fungus in healthy humans that causes infection in immunocompromised individuals through the secretion of several virulence factors. The successful establishment of infection is owing to elaborate strategies to cope with defensive molecules secreted by the host, including responses toward oxidative stress. Extracellular vesicle (EV) release is considered an alternative to the biomolecule secretory mechanism that favors fungal interactions with the host cells. During candidiasis establishment, the host environment becomes oxidative, and it impacts EV release and cargo. To simulate the host oxidative environment, we added menadione (an oxidative stress inducer) to the culture medium, and we explored C. albicans EV metabolites by metabolomics analysis. This study characterized lipidic molecules transported to an extracellular milieu by C. albicans after menadione exposure. Through Liquid Chromatography coupled with Mass Spectrometry (LC-MS) analyses, we identified biomolecules transported by EVs and supernatant. The identified molecules are related to several biological processes, such as glycerophospholipid and sphingolipid pathways, which may act at different levels by tuning compound production in accordance with cell requirements that favor a myriad of adaptive responses. Taken together, our results provide new insights into the role of EVs in fungal biology and host-pathogen interactions.

3.
bioRxiv ; 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-37131585

RESUMO

Major depressive disorder (MDD) is one of the most important causes of disability worldwide. While recent work provides insights into the molecular alterations in the brain of patients with MDD, whether these molecular signatures can be associated with the expression of specific symptom domains in males and females remains unclear. Here, we identified sex-specific gene modules associated with the expression of MDD, combining differential gene expression and co-expression network analyses in six cortical and subcortical brain regions. Our results show varying levels of network homology between males and females across brain regions, although the association between these structures and the expression of MDD remains highly sex-specific. We refined these associations to several symptom domains and identified transcriptional signatures associated with distinct functional pathways, including GABAergic and glutamatergic neurotransmission, metabolic processes, and intracellular signal transduction, across brain regions associated with distinct symptomatic profiles in a sex-specific fashion. In most cases, these associations were specific to males or to females with MDD, although a subset of gene modules associated with common symptomatic features in both sexes was also identified. Together, our findings suggest that the expression of distinct MDD symptom domains is associated with sex-specific transcriptional structures across brain regions.

4.
J Fungi (Basel) ; 9(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36675910

RESUMO

The fungal cell wall (FCW) is a dynamic structure responsible for the maintenance of cellular homeostasis, and is essential for modulating the interaction of the fungus with its environment. It is composed of proteins, lipids, pigments and polysaccharides, including chitin. Chitin synthesis is catalyzed by chitin synthases (CS), and up to eight CS-encoding genes can be found in Aspergillus species. This review discusses in detail the chitin synthesis and regulation in Aspergillus species, and how manipulation of chitin synthesis pathways can modulate fungal growth, enzyme production, virulence and susceptibility to antifungal agents. More specifically, the metabolic steps involved in chitin biosynthesis are described with an emphasis on how the initiation of chitin biosynthesis remains unknown. A description of the classification, localization and transport of CS was also made. Chitin biosynthesis is shown to underlie a complex regulatory network, with extensive cross-talks existing between the different signaling pathways. Furthermore, pathways and recently identified regulators of chitin biosynthesis during the caspofungin paradoxical effect (CPE) are described. The effect of a chitin on the mammalian immune system is also discussed. Lastly, interference with chitin biosynthesis may also be beneficial for biotechnological applications. Even after more than 30 years of research, chitin biosynthesis remains a topic of current interest in mycology.

5.
Cells ; 11(14)2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35883627

RESUMO

The role of extracellular vesicles (EVs) in interkingdom communication is widely accepted, and their role in intraspecies communication has been strengthened by recent research. Based on the regulation promoted by EV-associated molecules, the interactions between host and pathogens can reveal different pathways that ultimately affect infection outcomes. As a great part of the regulation is ascribable to RNA contained in EVs, many studies have focused on profiling RNAs in fungal and host EVs, tracking their accumulation during infection, and identifying potential target genes. Herein, we overview the main classes of RNA contained in fungal EVs and the biological processes regulated by these molecules, portraying a state-of-the-art picture of RNAs loaded in fungal EVs, while also raising several questions to drive future investigations. Our compiled data show unambiguously that EVs act as key elements in signaling pathways, and play a crucial role in pathosystems. A complete understanding of the processes that govern RNA content loading and trafficking, and its effect on recipient cells, will lead to improved technologies to ward off infectious agents that threaten human health.


Assuntos
Vesículas Extracelulares , RNA , Vesículas Extracelulares/metabolismo , Humanos , RNA/metabolismo , Transdução de Sinais
6.
mBio ; 13(1): e0327221, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35012355

RESUMO

Fungal infections are associated with high mortality rates in humans. The risk of fungal diseases creates the urgent need to broaden the knowledge base regarding their pathophysiology. In this sense, the role of extracellular vesicles (EVs) has been described to convey biological information and participate in the fungus-host interaction process. We hypothesized that fungal EVs work as an additional element in the communication routes regulating fungal responses in intraspecies interaction systems. In this respect, the aim of this study was to address the gene regulation profiles prompted by fungal EVs in intraspecies recipient cells. Our data demonstrated the intraspecies uptake of EVs in pathogenic fungi, such as Candida albicans, Aspergillus fumigatus, and Paracoccidioides brasiliensis, and the effects triggered by EVs in fungal cells. In C. albicans, we evaluated the involvement of EVs in the yeast-to-hypha transition, while in P. brasiliensis and A. fumigatus the function of EVs as stress transducers was investigated. P. brasiliensis and A. fumigatus were exposed to an inhibitor of glycosylation or UV light, respectively. The results demonstrated the role of EVs in regulating the expression of target genes and triggering phenotypic changes. The EVs treatment induced cellular proliferation and boosted the yeast to hyphal transition in C. albicans, while they enhanced stress responsiveness in A. fumigatus and P. brasiliensis, establishing a role for EVs in fungal intraspecies communication. Thus, EVs regulate fungal behavior, acting as potent message effectors, and understanding their effects and mechanism(s) of action could be exploited in antifungal therapies. IMPORTANCE Here, we report a study about extracellular vesicles (EVs) as communication mediators in fungi. Our results demonstrated the role of EVs from Candida albicans, Aspergillus fumigatus, and Paracoccidioides brasiliensis regulating the expression of target genes and phenotypic features. We asked whether fungal EVs play a role as message effectors. We show that fungal EVs are involved in fungal interaction systems as potent message effectors, and understanding their effects and mechanisms of action could be exploited in antifungal therapies.


Assuntos
Vesículas Extracelulares , Micoses , Humanos , Antifúngicos/farmacologia , Aspergillus fumigatus/genética , Candida albicans , Comunicação Celular
7.
mSphere ; 5(3)2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32376699

RESUMO

Aspergillus flavus, a ubiquitous and saprophytic fungus, is the second most common cause of aspergillosis worldwide. Several mechanisms contribute to the establishment of the fungal infection. Extracellular vesicles (EVs) have been described as "virulence factor delivery bags" in several fungal species, demonstrating a crucial role during the infection. In this study, we evaluated production of A. flavus EVs and their immunomodulatory functions. We verified that A. flavus EVs induce macrophages to produce inflammatory mediators, such as nitric oxide, tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6), and IL-1ß. Furthermore, the A. flavus EVs enhance phagocytosis and killing by macrophages and induce M1 macrophage polarization in vitro In addition, a prior inoculation of A. flavus EVs in Galleria mellonella larvae resulted in a protective effect against the fungal infection. Our findings suggest that A. flavus EVs are biologically active and affect the interaction between A. flavus and host immune cells, priming the innate immune system to eliminate the fungal infection. Collectively, our results suggest that A. flavus EVs play a crucial role in aspergillosis.IMPORTANCE Immunocompromised patients are susceptible to several fungal infections. The genus Aspergillus can cause increased morbidity and mortality. Developing new therapies is essential to understand the fungal biology mechanisms. Fungal EVs carry important virulence factors, thus playing pivotal roles in fungal pathophysiology. No study to date has reported EV production by Aspergillus flavus, a fungus considered to be the second most common cause of aspergillosis and relevant food contaminator found worldwide. In this study, we produced A. flavus EVs and evaluated the in vitro immunomodulatory effects of EVs on bone marrow-derived macrophages (BMDMs) and in vivo effects in a Galleria mellonella model.


Assuntos
Aspergillus flavus/imunologia , Diferenciação Celular/imunologia , Vesículas Extracelulares/imunologia , Macrófagos/fisiologia , Animais , Aspergilose/imunologia , Aspergilose/prevenção & controle , Aspergillus flavus/patogenicidade , Polaridade Celular , Imunomodulação , Larva/microbiologia , Macrófagos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mariposas/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...