Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
BJA Open ; 11: 100291, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39027721

RESUMO

Background: Pulse wave transit time (PWTT) shows promise for monitoring intravascular fluid status intraoperatively. Presently, it is unknown how PWTT mirrors haemodynamic variables representing preload, inotropy, or afterload. Methods: PWTT was measured continuously in 24 adult volunteers. Stroke volume was assessed by transthoracic echocardiography. Volunteers underwent four randomly assigned manoeuvres: 'Stand-up' (decrease in preload), passive leg raise (increase in preload), a 'step-test' (adrenergic stimulation), and a 'Valsalva manoeuvre' (increase in intrathoracic pressure). Haemodynamic measurements were performed before and 1 and 5 min after completion of each manoeuvre. Correlations between PWTT and stroke volume were analysed using the Pearson correlation coefficient. Results: 'Stand-up' caused an immediate increase in PWTT (mean change +55.9 ms, P-value <0.0001, 95% confidence interval 46.0-65.7) along with an increase in mean arterial pressure and heart rate and a drop in stroke volume (P-values <0.0001). Passive leg raise caused an immediate drop in PWTT (mean change -15.4 ms, P-value=0.0024, 95% confidence interval -25.2 to -5.5) along with a decrease in mean arterial pressure (P-value=0.0052) and an increase in stroke volume (P-value=0.001). After 1 min, a 'step-test' caused no significant change in PWTT measurements (P-value=0.5716) but an increase in mean arterial pressure and heart rate (P-values <0.0001), without changes in stroke volume (P-value=0.1770). After 5 min, however, PWTT had increased significantly (P-value <0.0001). Measurements after the Valsalva manoeuvre caused heterogeneous results. Conclusion: Noninvasive assessment of PWTT shows promise to register immediate preload changes in healthy adults. The clinical usefulness of PWTT may be hampered by late changes because of reasons different from fluid shifts. Clinical trial registration: German clinical trial register (DRKS, ID: DRKS00031978, https://www.drks.de/DRKS00031978).

2.
J Clin Monit Comput ; 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38381359

RESUMO

Haemodynamic monitoring and management are cornerstones of perioperative care. The goal of haemodynamic management is to maintain organ function by ensuring adequate perfusion pressure, blood flow, and oxygen delivery. We here present guidelines on "Intraoperative haemodynamic monitoring and management of adults having non-cardiac surgery" that were prepared by 18 experts on behalf of the German Society of Anaesthesiology and Intensive Care Medicine (Deutsche Gesellschaft für Anästhesiologie und lntensivmedizin; DGAI).

3.
BMC Anesthesiol ; 23(1): 60, 2023 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-36849887

RESUMO

BACKGROUND: Aim of this study is to test the predictive value of Pulse Wave Transit Time (PWTT) for fluid responsiveness in comparison to the established fluid responsiveness parameters pulse pressure (ΔPP) and corrected flow time (FTc) during major abdominal surgery. METHODS: Forty patients undergoing major abdominal surgery were enrolled with continuous monitoring of PWTT (LifeScope® Modell J BSM-9101 Nihon Kohden Europe GmbH, Rosbach, Germany) and stroke volume (Esophageal Doppler Monitoring CardioQ-ODM®, Deltex Medical Ltd, Chichester, UK). In case of hypovolemia (difference in pulse pressure [∆PP] ≥ 9%, corrected flow time [FTc] ≤ 350 ms) a fluid bolus of 7 ml/kg ideal body weight was administered. Receiver operating characteristics (ROC) curves and corresponding areas under the curve (AUCs) were used to compare different methods of determining PWTT. A Wilcoxon test was used to discriminate fluid responders (increase in stroke volume of ≥ 10%) from non-responders. The predictive value of PWTT for fluid responsiveness was compared by testing for differences between ROC curves of PWTT, ΔPP and FTc using the methods by DeLong. RESULTS: AUCs (area under the ROC-curve) to predict fluid responsiveness for PWTT-parameters were 0.61 (raw c finger Q), 0.61 (raw c finger R), 0.57 (raw c ear Q), 0.53 (raw c ear R), 0.54 (raw non-c finger Q), 0.52 (raw non-c finger R), 0.50 (raw non-c ear Q), 0.55 (raw non-c ear R), 0.63 (∆ c finger Q), 0.61 (∆ c finger R), 0.64 (∆ c ear Q), 0.66 (∆ c ear R), 0.59 (∆ non-c finger Q), 0.57 (∆ non-c finger R), 0.57 (∆ non-c ear Q), 0.61 (∆ non-c ear R) [raw measurements vs. ∆ = respiratory variation; c = corrected measurements according to Bazett's formula vs. non-c = uncorrected measurements; Q vs. R = start of PWTT-measurements with Q- or R-wave in ECG; finger vs. ear = pulse oximetry probe location]. Hence, the highest AUC to predict fluid responsiveness by PWTT was achieved by calculating its respiratory variation (∆PWTT), with a pulse oximeter attached to the earlobe, using the R-wave in ECG, and correction by Bazett's formula (AUC best-PWTT 0.66, 95% CI 0.54-0.79). ∆PWTT was sufficient to discriminate fluid responders from non-responders (p = 0.029). No difference in predicting fluid responsiveness was found between best-PWTT and ∆PP (AUC 0.65, 95% CI 0.51-0.79; p = 0.88), or best-PWTT and FTc (AUC 0.62, 95% CI 0.49-0.75; p = 0.68). CONCLUSION: ΔPWTT shows poor ability to predict fluid responsiveness intraoperatively. Moreover, established alternatives ΔPP and FTc did not perform better. TRIAL REGISTRATION: Prior to enrolement on clinicaltrials.gov (NC T03280953; date of registration 13/09/2017).


Assuntos
Líquidos Corporais , Dedos , Humanos , Extremidade Superior , Pressão Sanguínea , Europa (Continente)
4.
J Neurosurg Anesthesiol ; 29(3): 251-257, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26998648

RESUMO

BACKGROUND: Neurosurgical procedures in sitting position need advanced cardiovascular monitoring. Transesophageal echocardiography (TEE) to measure cardiac output (CO)/cardiac index (CI) and stroke volume (SV), and invasive arterial blood pressure measurements for systolic (ABPsys), diastolic (ABPdiast) and mean arterial pressure (MAP) are established monitoring technologies for these kind of procedures. A noninvasive device for continuous monitoring of blood pressure and CO based on a modified Penaz technique (volume-clamp method) was introduced recently. In the present study the noninvasive blood pressure measurements were compared with invasive arterial blood pressure monitoring, and the noninvasive CO monitoring to TEE measurements. METHODS: Measurements of blood pressure and CO were performed in 35 patients before/after giving a fluid bolus and a change from supine to sitting position, start of surgery, and repositioning from sitting to supine at the end of surgery. Data pairs from the noninvasive device (Nexfin HD) versus arterial line measurements (ABPsys, ABPdiast, MAP) and versus TEE (CO, CI, SV) were compared using Bland-Altman analysis and percentage error. RESULTS: All parameters compared (CO, CI, SV, ABPsys, ABPdiast, MAP) showed a large bias and wide limits of agreement. Percentage error was above 30% for all parameters except ABPsys. CONCLUSION: The noninvasive device based on a modified Penaz technique cannot replace arterial blood pressure monitoring or TEE in anesthetized patients undergoing neurosurgery in sitting position.


Assuntos
Hemodinâmica , Procedimentos Neurocirúrgicos/métodos , Posicionamento do Paciente , Adulto , Idoso , Anestesia Geral , Pressão Arterial , Pressão Sanguínea , Determinação da Pressão Arterial , Débito Cardíaco , Ecocardiografia Transesofagiana , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Monitorização Intraoperatória , Postura/fisiologia , Reprodutibilidade dos Testes , Volume Sistólico , Decúbito Dorsal
7.
Minerva Anestesiol ; 82(6): 625-34, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26492446

RESUMO

BACKGROUND: Sleep-disordered breathing (SDB) is closely associated with perioperative complications. STOP-Bang score was validated for preoperative screening of SDB. However, STOP-Bang Score lacks adequately high specificity. We aimed to improve it by combining it with the Mallampati Score. METHODS: The study included 347 patients, in which we assessed both STOP-Bang and Mallampati scores. Overnight oxygen saturation was measured to calculate ODI4%. We calculated the sensitivity and specificity for AHI and ODI4% of both scores separately and in combination. RESULTS: We found that STOP-Bang Score ≥3 was present in 71%, ODI≥5/h (AHI ≥5/h) in 42.6% (39.3%) and ODI≥15/h (AHI ≥15/h) in 13.5% (17.8%). For ODI4%≥5/h (AHI ≥5/h) we observed in men a response rate for sensitivity and specificity of STOP-Bang of 94.5% and 17.1% (90.9% and 12.5%) and in women 66% and 51% (57.8% and 46.9%). For ODI4%≥15/h (AHI≥15/h) it was 92% and 12% (84.6% and 10.3%) and 93% and 49% (75% and 49.2%). For ODI4%≥5 (AHI≥5) sensitivity and specificity of Mallampati score were in men 38.4% and 78.6% (27.3% and 68.2%) and in women 25% and 82.7% (21.9% and 81.3%), for ODI≥15 (AHI ≥15/h) 38.5% and 71.8% (26.9% and 69.2%) and 33.3% and 81.4% (17.9% and 79.6%). In combination, for ODI4%≥15/h, we found sensitivity in men to be 92.3% and in women 93.3%, specificity 10.3% and 41.4%. CONCLUSIONS: STOP-Bang Score combined with Mallampati Score fails to increase specificity. Low specificity should be considered when using both scores for preoperative screening of SDB.


Assuntos
Índice de Gravidade de Doença , Síndromes da Apneia do Sono/diagnóstico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oxigênio/análise , Cuidados Pré-Operatórios/métodos , Sensibilidade e Especificidade
8.
Paediatr Anaesth ; 25(10): 1046-53, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26179143

RESUMO

INTRODUCTION: Collecting a blood sample is usually necessary to measure hemoglobin levels in children. Especially in small children, noninvasively measuring the hemoglobin level could be extraordinarily helpful, but its precision and accuracy in the clinical environment remain unclear. In this study, noninvasive hemoglobin measurement and blood gas analysis were compared to hemoglobin measurement in a clinical laboratory. METHODS: In 60 healthy preoperative children (0.2-7.6 years old), hemoglobin was measured using a noninvasive method (SpHb; Radical-7 Pulse Co-Oximeter), a blood gas analyzer (clinical standard, BGAHb; ABL 800 Flex), and a laboratory hematology analyzer (reference method, labHb; Siemens Advia). Agreement between the results was assessed by Bland-Altman analysis and by determining the percentage of outliers. RESULTS: Sixty SpHb measurements, 60 labHb measurements, and 59 BGAHb measurements were evaluated. In 38% of the children, the location of the SpHb sensor had to be changed more than twice for the signal quality to be sufficient. The bias/limits of agreement between SpHb and labHb were -0.65/-3.4 to 2.1 g·dl(-1) . Forty-four percent of the SpHb values differed from the reference value by more than 1 g·dl(-1) . Age, difficulty of measurement, and the perfusion index (PI) had no influence on the accuracy of SpHb. The bias/limits of agreement between BGAHb and labHb were 1.14/-1.6 to 3.9 g·dl(-1) . Furthermore, 66% of the BGAHb values differed from the reference values by more than 1 g·dl(-1) . The absolute mean difference between SpHb and labHb (1.1 g·dl(-1) ) was smaller than the absolute mean difference between BGAHb and labHb (1.5 g·dl(-1) /P = 0.024). CONCLUSION: Noninvasive measurement of hemoglobin agrees more with the reference method than the measurement of hemoglobin using a blood gas analyzer. However, both methods can show clinically relevant differences from the reference method (ClinicalTrials.gov: NCT01693016).


Assuntos
Gasometria/métodos , Hemoglobinas/análise , Cuidados Pré-Operatórios/métodos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Estudos Prospectivos , Reprodutibilidade dos Testes
9.
Can J Anaesth ; 59(12): 1095-101, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23055034

RESUMO

BACKGROUND: Interscalene nerve blocks provide adequate analgesia, but there are no objective criteria for early assessment of correct catheter placement. In the present study, pulse oximetry technology was used to evaluate changes in the perfusion index (PI) in both blocked and unblocked arms, and changes in the plethysmographic variability index (PVI) were evaluated once mechanical ventilation was instituted. METHODS: The PI and PVI values were assessed using a Radical-7™ finger pulse oximetry device (Masimo Corp., Irvine, CA, USA) in both arms of 30 orthopedic patients who received an interscalene catheter at least 25 min before induction of general anesthesia. Data were evaluated at baseline, on application of local anesthetics; five, ten, and 15 min after onset of interscalene nerve blocks; after induction of general anesthesia; before and after a 500 mL colloid fluid challenge; and five minutes thereafter. RESULTS: In the 25 patients with successful blocks, the difference between the PI values in the blocked arm and the PI values in the contralateral arm increased within five minutes of the application of the local anesthetics (P < 0.05) and increased progressively until 15 min. After induction of general anesthesia, the PI increased in the unblocked arm while it remained relatively constant in the blocked arm, thus reducing the difference in the PI. A fluid challenge resulted in a decrease in PVI values in both arms. CONCLUSION: The perfusion index increases after successful interscalene nerve blockade and may be used as an indicator for successful block placement in awake patients. The PVI values before and after a fluid challenge can be useful to detect changes in preload, and this can be performed in both blocked and unblocked arms.


Assuntos
Bloqueio Nervoso/métodos , Pletismografia/métodos , Adulto , Idoso , Braço/irrigação sanguínea , Catéteres , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Bloqueio Nervoso/instrumentação , Oximetria , Temperatura Cutânea
10.
Crit Care ; 15(4): R197, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21843353

RESUMO

INTRODUCTION: Several studies have demonstrated that perioperative hemodynamic optimization has the ability to improve postoperative outcome in high-risk surgical patients. All of these studies aimed at optimizing cardiac output and/or oxygen delivery in the perioperative period. We conducted a survey with the American Society of Anesthesiologists (ASA) and the European Society of Anaesthesiology (ESA) to assess current hemodynamic management practices in patients undergoing high-risk surgery in Europe and in the United States. METHODS: A survey including 33 specific questions was emailed to 2,500 randomly selected active members of the ASA and to active ESA members. RESULTS: Overall, 368 questionnaires were completed, 57.1% from ASA and 42.9% from ESA members. Cardiac output is monitored by only 34% of ASA and ESA respondents (P = 0.49) while central venous pressure is monitored by 73% of ASA respondents and 84% of ESA respondents (P < 0.01). Specifically, the pulmonary artery catheter is being used much more frequently in the US than in Europe in the setup of high-risk surgery (85.1% vs. 55.3% respectively, P < 0.001). Clinical experience, blood pressure, central venous pressure, and urine output are the most widely indicators of volume expansion. Finally, 86.5% of ASA respondents and 98.1% of ESA respondents believe that their current hemodynamic management could be improved. CONCLUSIONS: In conclusion, these results point to a considerable gap between the accumulating evidence about the benefits of perioperative hemodynamic optimization and the available technologies that may facilitate its clinical implementation, and clinical practices in both Europe and the United States.


Assuntos
Anestesiologia , Hemodinâmica/fisiologia , Monitorização Fisiológica/métodos , Padrões de Prática Médica/estatística & dados numéricos , Europa (Continente) , Cirurgia Geral , Pesquisas sobre Atenção à Saúde , Humanos , América do Norte , Assistência Perioperatória
11.
J Surg Res ; 160(2): 288-93, 2010 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-19482294

RESUMO

BACKGROUND: Untreated hypovolemia results in impaired outcome. This study tests our hypothesis whether general hemodynamic parameters detect acute blood loss earlier than monitoring parameters of regional tissue beds. MATERIALS AND METHODS: Eight pigs (23-25 kg) were anesthetized and mechanically ventilated. A pulmonary artery catheter and an arterial catheter were inserted. Tissue oxygen tension was measured with Clark-type electrodes in the jejunal and colonic wall, in the liver, and subcutaneously. Jejunal microcirculation was assessed by laser Doppler flowmetry (LDF). Intravascular volume was optimized using difference in pulse pressure (dPP) to keep dPP below 13%. Sixty minutes after preparation, baseline measurements were taken. At first, 5% of total blood volume was withdrawn, followed by another 5% increment, and then in 10% increments until death. RESULTS: After withdrawal of 5% of estimated blood volume, dPP increased from 6.1% +/- 3.0% to 20.8% +/- 2.7% (P < 0.01). Mean arterial pressure (MAP), mean pulmonary artery pressure (PAP) and pulmonary artery occlusion pressure (PAOP) decreased with a blood loss of 10% (P < 0.01). Cardiac output (CO) changed after a blood loss of 20% (P < 0.05). Tissue oxygen tension in central organs, and blood flow in the jejunal muscularis decreased (P < 0.05) after a blood loss of 20%. Tissue oxygen tension in the skin, and jejunal mucosa blood flow decreased (P < 0.05) after a blood loss of 40% and 50%, respectively. CONCLUSIONS: In this hemorrhagic pig model systemic hemodynamic parameters were more sensitive to detect acute hypovolemia than tissue oxygen tension measurements or jejunal LDF measurements. Acute blood loss was detected first by dPP.


Assuntos
Hemodinâmica/fisiologia , Hemorragia/fisiopatologia , Hipovolemia/fisiopatologia , Microcirculação/fisiologia , Oxigênio/metabolismo , Doença Aguda , Animais , Pressão Sanguínea/fisiologia , Volume Sanguíneo/fisiologia , Débito Cardíaco/fisiologia , Colo/irrigação sanguínea , Colo/metabolismo , Modelos Animais de Doenças , Parada Cardíaca/metabolismo , Parada Cardíaca/fisiopatologia , Hemorragia/metabolismo , Hipovolemia/metabolismo , Jejuno/irrigação sanguínea , Jejuno/metabolismo , Fluxometria por Laser-Doppler , Fígado/irrigação sanguínea , Fígado/metabolismo , Sus scrofa
12.
Anesth Analg ; 108(6): 1823-9, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19448207

RESUMO

BACKGROUND: Difference in pulse pressure (dPP) reliably predicts fluid responsiveness in patients. We have developed a respiratory variation (RV) monitoring device (RV monitor), which continuously records both airway pressure and arterial blood pressure (ABP). We compared the RV monitor measurements with manual dPP measurements. METHODS: ABP and airway pressure (PAW) from 24 patients were recorded. Data were fed to the RV monitor to calculate dPP and systolic pressure variation in two different ways: (a) considering both ABP and PAW (RV algorithm) and (b) ABP only (RV(slim) algorithm). Additionally, ABP and PAW were recorded intraoperatively in 10-min intervals for later calculation of dPP by manual assessment. Interobserver variability was determined. Manual dPP assessments were used for comparison with automated measurements. To estimate the importance of the PAW signal, RV(slim) measurements were compared with RV measurements. RESULTS: For the 24 patients, 174 measurements (6-10 per patient) were recorded. Six observers assessed dPP manually in the first 8 patients (10-min interval, 53 measurements); no interobserver variability occurred using a computer-assisted method. Bland-Altman analysis showed acceptable bias and limits of agreement of the 2 automated methods compared with the manual method (RV: -0.33% +/- 8.72% and RV(slim): -1.74% +/- 7.97%). The difference between RV measurements and RV(slim) measurements is small (bias -1.05%, limits of agreement 5.67%). CONCLUSIONS: Measurements of the automated device are comparable with measurements obtained by human observers, who use a computer-assisted method. The importance of the PAW signal is questionable.


Assuntos
Algoritmos , Automação , Pressão Sanguínea/fisiologia , Monitorização Intraoperatória/métodos , Abdome/cirurgia , Adulto , Idoso , Resistência das Vias Respiratórias/fisiologia , Volume Sanguíneo/fisiologia , Interpretação Estatística de Dados , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Variações Dependentes do Observador , Pulso Arterial , Padrões de Referência , Reprodutibilidade dos Testes , Mecânica Respiratória/fisiologia
13.
Obes Surg ; 18(1): 77-83, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18064525

RESUMO

BACKGROUND: Oxidative killing is the primary defense against surgical pathogens; risk of infection is inversely related to tissue oxygenation. Subcutaneous tissue oxygenation in obese patients is significantly less than in lean patients during general anesthesia. However, it remains unknown whether reduced intraoperative tissue oxygenation in obese patients results from obesity per se or from a combination of anesthesia and surgery. In a pilot study, we tested the hypothesis that tissue oxygenation is reduced in spontaneously breathing, unanesthetized obese volunteers. METHODS: Seven lean volunteers with a body mass index (BMI) of 22 +/- 2 kg/m(2) were compared to seven volunteers with a BMI of 46 +/- 4 kg/m(2). Volunteers were subjected to the following oxygen challenges: (1) room air; (2) 2 l/min oxygen via nasal prongs, (3) 6 l/min oxygen through a rebreathing face mask; (4) oxygen as needed to achieve an arterial oxygen pressure (arterial pO(2)) of 200 mmHg; and (5) oxygen as needed to achieve an arterial pO(2) of 300 mmHg. The oxygen challenges were randomized. Arterial pO(2) was measured with a continuous intraarterial blood gas analyzer (Paratrend 7); deltoid subcutaneous tissue oxygenation was measured with a polarographic microoxygen sensor (Licox). RESULTS: Subcutaneous tissue oxygenation was similar in lean and obese volunteers: (1) room air, 52 +/- 10 vs 58 +/- 8 mmHg; (2) 2 l/min, 77 +/- 25 vs 79 +/- 24 mmHg; (3) 6 l/min, 125 +/- 43 vs 121 +/- 25 mmHg; (4) arterial pO(2) = 200 mmHg, 115 +/- 42 vs 144 +/- 23 mmHg; (5) arterial pO(2) = 300 mmHg, 145 +/- 41 vs 154 +/- 32 mmHg. CONCLUSION: In this pilot study, we could not identify significant differences in deltoid subcutaneous tissue oxygen pressure between lean and morbidly obese volunteers.


Assuntos
Obesidade/fisiopatologia , Oxigênio/análise , Tela Subcutânea/química , Adulto , Feminino , Humanos , Masculino , Projetos Piloto , Pressão , Magreza , Voluntários
14.
J Gastrointest Surg ; 12(1): 67-72, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17960466

RESUMO

Non-invasive pulse spectrophotometry to measure indocyanine green (ICG) elimination correlates well with the conventional invasive ICG clearance test. Nevertheless, the precision of this method remains unclear for any application, including small-for-size liver remnants. We therefore measured ICG plasma disappearance rate (PDR) during the anhepatic phase of orthotopic liver transplantation using pulse spectrophotometry. Measurements were done in 24 patients. The median PDR after exclusion of two outliers and two patients with inconstant signal was 1.55%/min (95% confidence interval [CI]=0.8-2.2). No correlation with patient age, gender, body mass, blood loss, administration of fresh frozen plasma, norepinephrine dose, postoperative albumin (serum), or difference in pre and post transplant body weight was detected. In conclusion, we found an ICG-PDR different from zero in the anhepatic phase, an overestimation that may arise in particular from a redistribution into the interstitial space. If ICG pulse spectrophotometry is used to measure functional hepatic reserve, the verified average difference from zero (1.55%/min) determined in our study needs to be taken into account.


Assuntos
Corantes/farmacocinética , Verde de Indocianina/farmacocinética , Transplante de Fígado/fisiologia , Monitorização Intraoperatória/métodos , Adulto , Idoso , Feminino , Seguimentos , Humanos , Masculino , Taxa de Depuração Metabólica , Pessoa de Meia-Idade , Prognóstico , Reprodutibilidade dos Testes , Estudos Retrospectivos , Espectrofotometria/métodos
15.
J Clin Monit Comput ; 20(6): 385-9, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17053869

RESUMO

OBJECTIVE: The information derived from central venous catheters is underused. We developed an EKG-R synchronization and averaging system to obtained distinct CVP waveforms and analyzed components of these. METHODS: Twenty-five paralyzed surgical patients undergoing CVP monitoring under mechanical ventilation were studied. CVP and EKG signals were analyzed employing our system, the mean CVP and CVP at end-diastole during expiration were compared, and CVP waveform components were measured using this system. RESULTS: CVP waveforms were clearly visualized in all patients. They showed the a peak to be 1.8+/- 0.7 mmHg, which was the highest of three peaks, and the x trough to be lower than the y trough (-1.6+/- 0.7 mmHg and -0.9+/- 0.5 mmHg, respectively), with a mean pulse pressure of 3.4 mmHg. The difference between the mean CVP and CVP at end-diastole during expiration was 0.58+/- 0.81 mmHg. CONCLUSIONS: The mean CVP can be used as an index of right ventricular preload in patients under mechanical ventilation with regular sinus rhythm. Our newly developed system is useful for clinical monitoring and for education in circulatory physiology.


Assuntos
Determinação da Pressão Arterial/métodos , Pressão Venosa Central , Monitorização Fisiológica/métodos , Determinação da Pressão Arterial/estatística & dados numéricos , Eletrocardiografia/estatística & dados numéricos , Humanos , Monitorização Fisiológica/estatística & dados numéricos
16.
Shock ; 26(4): 391-5, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16980887

RESUMO

We assessed changes in intravascular volume monitored by difference in pulse pressure (dPP%) after stepwise hemorrhage in an experimental pig model. Six pigs (23-25 kg) were anesthetized (isoflurane 1.5 vol%) and mechanically ventilated to keep end-tidal CO2 (etCO2) at 35 mmHg. A PA-catheter and an arterial catheter were placed via femoral access. During and after surgery, animals received lactated Ringer's solution as long as they were considered volume responders (dPP>13%). Then animals were allowed to stabilize from the induction of anesthesia and insertion of catheters for 30 min. After stabilization, baseline measurements were taken. Five percent of blood volume was withdrawn, followed by another 5%, and then in 10%-increments until death from exsanguination occurred. After withdrawal of 5% of blood volume, all pigs were considered volume responders (dPP>13%); dPP rose significantly from 6.1+/-3.3% to 19.4+/-4.2%. The regression analysis of stepwise hemorrhage revealed a linear relation between blood loss (hemorrhage in %) and dPP (y=0.99*x+14; R2=0.7764; P<.0001). In addition, dPP was the only parameter that changed significantly between baseline and a blood loss of 5% (P<0.01), whereas cardiac output, stroke volume, heart rate, MAP, central venous pressure, pulmonary artery occlusion pressure, and systemic vascular resistance, respectively, remained unchanged. We conclude that in an experimental hypovolemic pig model, dPP correlates well with blood loss.


Assuntos
Pressão Sanguínea/fisiologia , Volume Sanguíneo/fisiologia , Hemorragia/fisiopatologia , Animais , Determinação do Volume Sanguíneo , Suínos
17.
Curr Opin Anaesthesiol ; 18(2): 151-6, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16534331

RESUMO

PURPOSE OF REVIEW: Perioperative hypothermia triples the incidence of adverse myocardial outcomes in high-risk patients; it significantly increases blood loss and augments allogeneic transfusion requirements. Even mild hypothermia increases the incidence of surgical wound infection following colon resection and therefore the duration of hospitalization. Hypothermia adversely affects antibody- and cell-mediated immune defenses, as well as the oxygen availability in the peripheral wound tissues. Mild perioperative hypothermia changes the kinetics and action of various anesthetic and paralyzing agents, increases thermal discomfort, and is associated with delayed postanesthetic recovery. RECENT FINDINGS: On the other hand however, therapeutic hypothermia may be an interesting approach in various settings. Lowering core temperature to 32-34 degrees C may reduce cell injury by suppressing excitotoxins and oxygen radicals, stabilizing cell membranes, and reducing the number of abnormal electrical depolarizations. Evidence in animals indicates that even mild hypothermia provides substantial protection against cerebral ischemia and myocardial infarction. Mild hypothermia has been shown to improve outcome after cardiac arrest in humans. Randomized trials are in progress to evaluate the potential benefits of mild hypothermia during aneurysm clipping and after stroke or acute myocardial infarction. SUMMARY: This article reviews recent publications in the field of accidental as well as therapeutic hypothermia, and tries to assess what evidence is available at the present time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...