Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1864(12): 1631-1640, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27544639

RESUMO

Base excision repair (BER) is a flagship DNA repair system responsible for maintaining genome integrity. Apart from basal enzymes, this system involves several accessory factors essential for coordination and regulation of DNA processing during substrate channeling. Y-box-binding protein 1 (YB-1), a multifunctional factor that can interact with DNA, RNA, poly(ADP-ribose) and plenty of proteins including DNA repair enzymes, is increasingly considered as a non-canonical protein of BER. Here we provide quantitative characterization of YB-1 physical interactions with key BER factors such as PARP1, PARP2, APE1, NEIL1 and pol ß and comparison of the full-length YB-1 and its C-terminally truncated nuclear form in regard to their binding affinities for BER proteins. Data on functional interactions reveal strong stimulation of PARP1 autopoly(ADP-ribosyl)ation and inhibition of poly(ADP-ribose) degradation by PARG in the presence of YB-1. Moreover, YB-1 is shown to stimulate AP lyase activity of NEIL1 and to inhibit dRP lyase activity of pol ß on model DNA duplex structure. We also demonstrate for the first time YB-1 poly(ADP-ribosyl)ation in the presence of RNA.


Assuntos
Reparo do DNA/fisiologia , Proteína 1 de Ligação a Y-Box/metabolismo , Animais , Dano ao DNA , DNA Glicosilases/metabolismo , DNA Polimerase beta/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos , Camundongos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Proteína 1 de Ligação a Y-Box/química , Proteína 1 de Ligação a Y-Box/genética
2.
Biochimie ; 119: 36-44, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26453809

RESUMO

Multifunctional Y-box binding protein 1 (YB-1) is actively studied as one of the components of cellular response to genotoxic stress. However, the precise role of YB-1 in the process of DNA repair is still obscure. In the present work we report for the first time new posttranslational modification of YB-1 - poly(ADP-ribosyl)ation, catalyzed by one of the main regulatory enzymes of DNA repair - poly(ADP-ribose)polymerase 1 (PARP1) in the presence of model DNA substrate carrying multiple DNA lesions. Therefore, poly(ADP-ribosyl)ation of YB-1 catalyzed with PARP1, can be stimulated by damaged DNA. The observed property of YB-1 underlines its ability to participate in the DNA repair by its involvement in the regulatory cascades of DNA repair.


Assuntos
Dano ao DNA , Reparo do DNA , Modelos Biológicos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Processamento de Proteína Pós-Traducional , Regulação para Cima , Proteína 1 de Ligação a Y-Box/metabolismo , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , Ensaio de Desvio de Mobilidade Eletroforética , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Mutação , NAD/metabolismo , Estresse Oxidativo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli Adenosina Difosfato Ribose/metabolismo , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína 1 de Ligação a Y-Box/química , Proteína 1 de Ligação a Y-Box/genética
3.
J Mol Recognit ; 28(2): 117-23, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25605055

RESUMO

Y-box binding protein 1 (YB-1) is widely known to participate in a multiple DNA and RNA processing events in the living cell. YB-1 is also regarded as a putative component of DNA repair. This possibility is supported by relocalization of YB-1 into the nucleus following genotoxic stress. Increased affinity of YB-1 for damaged DNA, especially in its single-stranded form, and its functional interaction with proteins responsible for the initiation of apurinic/apyrimidinic (AP) site repair, namely, AP endonuclease 1 and DNA glycosylase NEIL1, suggest that YB-1 could be involved in the repair of AP sites as a regulatory protein. Here we show that YB-1 has a significant inhibitory effect on the cleavage of AP sites located in single-stranded DNA and in DNA bubble structures. Such interference may be considered as a possible mechanism to prevent single-stranded intermediates of DNA replication, transcription and repair from being converted into highly genotoxic DNA strand breaks, thus allowing the cell to coordinate different DNA processing mechanisms.


Assuntos
DNA Glicosilases/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/química , DNA/química , DNA/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Sítios de Ligação , Núcleo Celular/metabolismo , Dano ao DNA , DNA Glicosilases/genética , Reparo do DNA , Replicação do DNA , DNA de Cadeia Simples , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Humanos , Especificidade por Substrato
4.
J Mol Recognit ; 26(12): 653-61, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24277610

RESUMO

The human XPC-RAD23B complex and its yeast ortholog, Rad4-Rad23, are the primary initiators of global genome nucleotide excision repair. In this study, two types of DNA binding assays were used for the detailed analysis of interaction of these proteins with damaged DNA. An electrophoretic mobility shift assay revealed that human and yeast orthologs behave similarly in DNA binding. Quantitative analyses of XPC/Rad4 binding to the model DNA structures were performed using fluorescent depolarization measurements. The XPC-RAD23B and the Rad4-Rad23 proteins bind to the damaged 15 nt bubble-DNA structure mimicking in size the "transcription bubble" DNA intermediate with the highest affinity (KD values ~10(-10) M or less) that is reduced in the following order: damaged bubble > undamaged bubble > damaged duplex > undamaged duplex. The affinity of XPC/Rad4 for various DNAs was shown to correlate with DNA bending angle. The results obtained show clearly that more deviation from regular DNA structure leads to higher XPC/Rad4 affinity.


Assuntos
Dano ao DNA/genética , Enzimas Reparadoras do DNA/química , Proteínas de Ligação a DNA/química , DNA/química , Ensaio de Desvio de Mobilidade Eletroforética , Polarização de Fluorescência , Humanos , Ligação Proteica
5.
J Biol Chem ; 288(15): 10936-47, 2013 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-23443653

RESUMO

The human XPC-RAD23B complex and its yeast ortholog, Rad4-Rad23, are the primary initiators of global genome nucleotide excision repair. The interaction of these proteins with damaged DNA was analyzed using model DNA duplexes containing a single fluorescein-substituted dUMP analog as a lesion. An electrophoretic mobility shift assay revealed similarity between human and yeast proteins in DNA binding. Quantitative analyses of XPC/Rad4 binding to the model DNA structures were performed by fluorescent depolarization measurements. XPC-RAD23B and Rad4-Rad23 proteins demonstrate approximately equal binding affinity to the damaged DNA duplex (K(D) ∼ (0.5 ± 0.1) and (0.6 ± 0.3) nM, respectively). Using photoreactive DNA containing 5-iodo-dUMP in defined positions, XPC/Rad4 location on damaged DNA was shown. Under conditions of equimolar binding to DNA both proteins exhibited the highest level of cross-links to 5I-dUMP located exactly opposite the damaged nucleotide. The positioning of the XPC and Rad4 proteins on damaged DNA by photocross-linking footprinting is consistent with x-ray analysis of the Rad4-DNA crystal complex. The identity of the XPC and Rad4 location illustrates the common principles of structure organization of DNA damage-scanning proteins from different Eukarya organisms.


Assuntos
Dano ao DNA/fisiologia , Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/metabolismo , Complexos Multiproteicos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Enzimas Reparadoras do DNA/química , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Humanos , Complexos Multiproteicos/química , Complexos Multiproteicos/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
6.
J Mol Recognit ; 25(4): 224-33, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22434712

RESUMO

DNA glycosylases are key enzymes in the first step of base excision DNA repair, recognizing DNA damage and catalyzing the release of damaged nucleobases. Bifunctional DNA glycosylases also possess associated apurinic/apyrimidinic (AP) lyase activity that nick the damaged DNA strand at an abasic (or AP) site, formed either spontaneously or at the first step of repair. NEIL1 is a bifunctional DNA glycosylase capable of processing lesions, including AP sites, not only in double-stranded but also in single-stranded DNA. Here, we show that proteins participating in DNA damage response, YB-1 and RPA, affect AP site cleavage by NEIL1. Stimulation of the AP lyase activity of NEIL1 was observed when an AP site was located in a 60 nt-long double-stranded DNA. Both RPA and YB-1 inhibited AP site cleavage by NEIL1 when the AP site was located in single-stranded DNA. Taking into account a direct interaction of YB-1 with the AP site, located in single-stranded DNA, and the high affinity of both YB-1 and RPA for single-stranded DNA, this behavior is presumably a consequence of a competition with NEIL1 for the DNA substrate. Xeroderma pigmentosum complementation group C protein (XPC), a key protein of another DNA repair pathway, was shown to interact directly with AP sites but had no effect on AP site cleavage by NEIL1.


Assuntos
Clivagem do DNA , DNA Glicosilases/química , Proteínas de Ligação a DNA/química , Proteína de Replicação A/química , Fatores de Transcrição/química , Animais , Ácido Apurínico/química , Boroidretos/química , DNA de Cadeia Simples/química , Camundongos , Polinucleotídeos/química , Ligação Proteica , Coelhos , Bases de Schiff/química
7.
Nucleic Acids Res ; 37(7): 2313-26, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19244309

RESUMO

Replication protein A (RPA) is a heterotrimeric (70, 32 and 14 kDa subunits), single-stranded DNA-binding protein required for cellular DNA metabolism. All subunits of RPA are essential for life, but the specific functions of the 32 and 14 kDa subunits remains unknown. The 32 kDa subunit (RPA2) has multiple domains, but only the central DNA-binding domain (called DBD D) is essential for life in Saccharomyces cerevisiae. To define the essential function(s) of RPA2 in S. cerevisiae, a series of site-directed mutant forms of DBD D were generated. These mutant constructs were then characterized in vitro and in vivo. The mutations had minimal effects on the overall structure and activity of the RPA complex. However, several mutants were shown to disrupt crosslinking of RPA2 to DNA and to dramatically lower the DNA-binding affinity of a RPA2-containing subcomplex. When introduced into S. cerevisiae, all DBD D mutants were viable and supported normal growth rates and DNA replication. These findings indicate that RPA2-DNA interactions are not essential for viability and growth in S. cerevisiae. We conclude that DNA-binding activity of RPA2 is dispensable in yeast and that the essential function of DBD D is intra- and/or inter-protein interactions.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Proteína de Replicação A/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Sequência de Aminoácidos , Replicação do DNA , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , Proteína de Replicação A/química , Proteína de Replicação A/genética , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efeitos da radiação , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Moldes Genéticos , Raios Ultravioleta
8.
J Biol Chem ; 279(34): 35368-76, 2004 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-15205463

RESUMO

The heterotrimeric replication protein A (RPA) has multiple essential activities in eukaryotic DNA metabolism and in signaling pathways. Despite extensive analyses, the functions of the smallest RPA subunit p14 are still unknown. To solve this issue we produced and characterized a dimeric RPA complex lacking p14, RPADeltap14, consisting of p70 and p32. RPADeltap14 was able to bind single-stranded DNA, but its binding mode and affinity differed from those of the heterotrimeric complex. Moreover, in the RPADeltap14 complex p32 only minimally recognized the 3'-end of a primer in a primer-template junction. Partial proteolytic digests revealed that p14 and p32 together stabilize the C terminus of p70 against degradation. Although RPADeltap14 efficiently supported bidirectional unwinding of double-stranded DNA and interacted with both the simian virus 40 (SV40) large T antigen and cellular DNA polymerase alpha-primase, it did not support cell-free SV40 DNA replication. This inability manifested itself in a failure to support both the primer synthesis and primer elongation reactions. These data reveal that efficient binding and correct positioning of the RPA complex on single-stranded DNA requires all three subunits to support DNA replication.


Assuntos
Replicação do DNA , Proteínas de Ligação a DNA , Subunidades Proteicas , Antígenos Virais de Tumores/metabolismo , DNA Polimerase I/metabolismo , DNA Primase/metabolismo , DNA Viral/biossíntese , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas Imediatamente Precoces , Proteínas de Membrana , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína de Replicação A , Proteínas Repressoras/metabolismo , Transativadores/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
9.
Nucleic Acids Res ; 32(6): 1894-903, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15047856

RESUMO

The human nuclear single-stranded (ss) DNA- binding protein, replication protein A (RPA), is a heterotrimer consisting of three subunits: p70, p32 and p14. The protein-DNA interaction is mediated by several DNA-binding domains (DBDs): two major (A and B, also known as p70A and p70B) and several minor (C and D, also known as p70C and p32D, and, presumably, by p70N). Here, using crosslinking experiments, we investigated an interaction of RPA deletion mutants containing a subset of the DBDs with partial DNA duplexes containing 5'-protruding ssDNA tails of 10, 20 and 30 nt. The crosslinks were generated using either a 'zero-length' photoreactive group (4-thio-2'-deoxyuridine-5'-monophosphate) embedded in the 3' end of the DNA primer, or a group connected to the 3' end by a lengthy linker (5-[N-[N-(4-azido-2,5-difluoro-3- chloropyridine-6-yl)-3-aminopropionyl]-trans-3-aminopropenyl-1]-2'-deoxyuridine-5'-monophosphate). In the absence of two major DBDs, p70A and p70B, the RPA trimerization core (p70C.p32D.p14) was capable of correctly recognizing the primer- template junction and adopting an orientation similar to that in native RPA. Both p70C and p32D contributed to this recognition. However, the domain contribution differed depending on the size of the ssDNA. In contrast with the trimerization core, the RPA dimerization core (p32D.p14) was incapable of detectably recognizing the DNA- junction structures, suggesting an orchestrating role for p70C in this process.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Sequência de Bases , Sítios de Ligação , Primers do DNA/metabolismo , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Humanos , Dados de Sequência Molecular , Mutação , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteína de Replicação A , Moldes Genéticos
10.
J Biol Chem ; 278(19): 17515-24, 2003 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-12600993

RESUMO

Although the mechanical aspects of the single-stranded DNA (ssDNA) binding activity of human replication protein A (RPA) have been extensively studied, only limited information is available about its interaction with other physiologically relevant DNA structures. RPA interacts with partial DNA duplexes that resemble DNA intermediates found in the processes of DNA replication and DNA repair. Limited proteolysis of RPA showed that RPA associated with ssDNA is less protected against proteases than RPA bound to a partial duplex DNA containing a 5'-protruding tail that had the same length as the ssDNA. Modification of both the 70- and 32-kDa subunits, RPA70 and RPA32, respectively, by photoaffinity labeling indicates that RPA can bind the primer-template junction of partial duplex DNAs by interacting with the 3'-end of the primer. The identification of the protein domains modified by the photoreactive 3'-end of the primer showed that domains located in the central part of the RPA32 subunit (amino acids 39-180) and the C-terminal part of the RPA70 subunit (amino acids 432-616) are involved in these interactions.


Assuntos
Proteínas de Ligação a DNA/análise , Região 3'-Flanqueadora , Sítios de Ligação , Primers do DNA/genética , Primers do DNA/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Proteína de Replicação A
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...