Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 11(8): 8395-8400, 2017 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-28753312

RESUMO

Ionic liquid gating has a number of advantages over solid-state gating, especially for flexible or transparent devices and for applications requiring high carrier densities. However, the large number of charged ions near the channel inevitably results in Coulomb scattering, which limits the carrier mobility in otherwise clean systems. We develop a model for this Coulomb scattering. We validate our model experimentally using ionic liquid gating of graphene across varying thicknesses of hexagonal boron nitride, demonstrating that disorder in the bulk ionic liquid often dominates the scattering.

2.
ACS Nano ; 10(4): 4565-9, 2016 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-26959226

RESUMO

One prominent structural feature of ionic liquids near surfaces is formation of alternating layers of anions and cations. However, how this layering responds to an applied potential is poorly understood. We focus on the structure of 1-butyl-1-methylpyrrolidinium tris(pentafluoroethyl) trifluorophosphate (BMPY-FAP) near the surface of a strontium titanate (SrTiO3) electric double-layer transistor. Using X-ray reflectivity, we show that at positive bias the individual layers in the ionic liquid double layer thicken and the layering persists further away from the interface. We model the reflectivity using a modified distorted crystal model with alternating cation and anion layers, which allows us to extract the charge density and the potential near the surface. We find that the charge density is strongly oscillatory with and without applied potential and that with an applied gate bias of 4.5 V the first two layers become significantly more cation rich than at zero bias, accumulating about 2.5 × 10(13) cm(-2) excess charge density.

3.
Nat Commun ; 6: 6437, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25762485

RESUMO

Electrolyte gating is a powerful technique for accumulating large carrier densities at a surface. Yet this approach suffers from significant sources of disorder: electrochemical reactions can damage or alter the sample, and the ions of the electrolyte and various dissolved contaminants sit Angstroms from the electron system. Accordingly, electrolyte gating is well suited to studies of superconductivity and other phenomena robust to disorder, but of limited use when reactions or disorder must be avoided. Here we demonstrate that these limitations can be overcome by protecting the sample with a chemically inert, atomically smooth sheet of hexagonal boron nitride. We illustrate our technique with electrolyte-gated strontium titanate, whose mobility when protected with boron nitride improves more than 10-fold while achieving carrier densities nearing 10(14) cm(-2). Our technique is portable to other materials, and should enable future studies where high carrier density modulation is required but electrochemical reactions and surface disorder must be minimized.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...