Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 62(15): 4017-4029, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37706713

RESUMO

Humidity is a critical environmental factor in various applications, and its temperature dependence must be considered when developing thermo-hygrometer fiber sensors. The optical fibers that constitute the sensor must have a temperature reference, which should be resistant to humidity to avoid cross-sensitivities. This paper presents two innovative optical fibers insensitive to humidity over temperatures ranging from -20∘ C to 55°C. To the best of our knowledge, the novel standard size optical fibers coated with acrylate and silicone are tested under controlled conditions using an optical time-domain reflectometer sensor based on Rayleigh scattering. The sensor achieves meter-range resolution over kilometers of length with a response time of few minutes.

2.
Sci Rep ; 10(1): 1344, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992770

RESUMO

In this contribution, a complete dissertation concerning the behavior of a Long Period Grating (LPG) inscribed in a B-Ge co-doped optical fiber by means of an excimer laser and exposed to proton irradiation during a recent extensive campaign performed at the European Organization for Nuclear Research (CERN) with a fluence of 4.4·1015 p∙cm-2 is provided. The experimental results have been thus combined for the first time to the best of our knowledge with numerical simulations in order to estimate the variations of the major parameters affecting the grating response during the ultra-high dose proton exposure. From the correlation between experimental and numerical analysis, the irradiation exposure was found to induce a maximal variation of the core effective refractive index of ~1.61·10-4, responsible of a resonance wavelength red shift of ~44 nm in correspondence of the highest absorbed radiation dose of 1.16 MGy. At the same time, a relevant decrease close to ~0.93·10-4 in the refractive index modulation pertaining to the grating was estimated, leading to a reduction of the resonant dip visibility of ~12 dB. The effect of the proton beam on the spectral response of the LPG device and on the optical fiber parameters was assessed during the relaxation phases, showing a partial recovery only of the wavelength shift without any relevant change in the dip visibility revealing thus a partial recovery only in the refractive index of the core while the reduction of the refractive index modulation observed during the irradiation remained unchanged.

3.
Opt Lett ; 39(14): 4128-31, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121668

RESUMO

This Letter deals with a feasibility analysis for the development of radiation-tolerant fiber-optic humidity sensors based on long-period grating (LPG) technology to be applied in high-energy physics (HEP) experiments currently running at the European Organization for Nuclear Research (CERN). In particular, here we propose a high-sensitivity LPG sensor coated with a finely tuned titanium dioxide (TiO2) thin layer (~100 nm thick) through the solgel deposition method. Relative humidity (RH) monitoring in the range 0%-75% and at four different temperatures (in the range -10°C-25°C) was carried out to assess sensor performance in real operative conditions required in typical experiments running at CERN. Experimental results demonstrate the very high RH sensitivities of the proposed device (up to 1.4 nm/% RH in correspondence to very low humidity levels), which turned out to be from one to three orders of magnitude higher than those exhibited by fiber Bragg grating sensors coated with micrometer-thin polyimide overlays. The radiation tolerance capability of the TiO2-coated LPG sensor is also investigated by comparing the sensing performance before and after its exposure to a 1 Mrad dose of γ-ionizing radiation. Overall, the results collected demonstrate the strong potential of the proposed technology with regard to its future exploitation in HEP applications as a robust and valid alternative to the commercial (polymer-based) hygrometers currently used.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...