Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 10(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35625737

RESUMO

Accumulating data suggest that chronic neuroinflammation-mediated neurodegeneration is a significant contributing factor for progressive neuronal and glial cell death in age-related neurodegenerative pathology. Furthermore, it could be encountered as long-term consequences in some viral infections, including post-COVID-19 Parkinsonism-related chronic sequelae. The current systematic review is focused on a recent question aroused during the pandemic's successive waves: are there post-SARS-CoV-2 immune-mediated reactions responsible for promoting neurodegeneration? Does the host's dysregulated immune counter-offensive contribute to the pathogenesis of neurodegenerative diseases, emerging as Parkinson's disease, in a complex interrelation between genetic and epigenetic risk factors? A synthetic and systematic literature review was accomplished based on the "Preferred Reporting Items for Systematic Principles Reviews and Meta-Analyses" (PRISMA) methodology, including registration on the specific online platform: International prospective register of systematic reviews-PROSPERO, no. 312183. Initially, 1894 articles were detected. After fulfilling the five steps of the selection methodology, 104 papers were selected for this synthetic review. Documentation was enhanced with a supplementary 47 bibliographic resources identified in the literature within a non-standardized search connected to the subject. As a final step of the PRISMA method, we have fulfilled a Population-Intervention-Comparison-Outcome-Time (PICOT)/Population-Intervention-Comparison-Outcome-Study type (PICOS)-based metanalysis of clinical trials identified as connected to our search, targeting the outcomes of rehabilitative kinesitherapeutic interventions compared to clinical approaches lacking such kind of treatment. Accordingly, we identified 10 clinical trials related to our article. The multi/interdisciplinary conventional therapy of Parkinson's disease and non-conventional multitarget approach to an integrative treatment was briefly analyzed. This article synthesizes the current findings on the pathogenic interference between the dysregulated complex mechanisms involved in aging, neuroinflammation, and neurodegeneration, focusing on Parkinson's disease and the acute and chronic repercussions of COVID-19. Time will tell whether COVID-19 neuroinflammatory events could trigger long-term neurodegenerative effects and contribute to the worsening and/or explosion of new cases of PD. The extent of the interrelated neuropathogenic phenomenon remains obscure, so further clinical observations and prospective longitudinal cohort studies are needed.

2.
Curr Biol ; 30(23): 4693-4709.e3, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-33007248

RESUMO

In spite of the positive effects of bacteria on health, certain species are harmful, and therefore, animals must weigh nutritional benefits against negative post-ingestion consequences and adapt their behavior accordingly. Here, we use Drosophila to unravel how the immune system communicates with the brain, enabling avoidance of harmful foods. Using two different known fly pathogens, mildly pathogenic Erwinia carotovora (Ecc15) and highly virulent Pseudomonas entomophila (Pe), we analyzed preference behavior in naive flies and after ingestion of either of these pathogens. Although survival assays confirmed the harmful effect of pathogen ingestion, naive flies preferred the odor of either pathogen to air and also to harmless mutant bacteria, suggesting that flies are not innately repelled by these microbes. By contrast, feeding assays showed that, when given a choice between pathogenic and harmless bacteria, flies-after an initial period of indifference-shifted to a preference for the harmless strain, a behavior that lasted for several hours. Flies lacking synaptic output of the mushroom body (MB), the fly's brain center for associative memory formation, lost the ability to distinguish between pathogenic and harmless bacteria, suggesting this to be an adaptive behavior. Interestingly, this behavior relied on the immune receptors PGRP-LC and -LE and their presence in octopaminergic neurons. We postulate a model wherein pathogen ingestion triggers PGRP signaling in octopaminergic neurons, which in turn relay the information about the harmful food source directly or indirectly to the MB, where an appropriate behavioral output is generated.


Assuntos
Proteínas de Transporte/metabolismo , Drosophila melanogaster/fisiologia , Corpos Pedunculados/fisiologia , Pectobacterium carotovorum/química , Pseudomonas/química , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Animais Geneticamente Modificados , Aprendizagem da Esquiva/fisiologia , Proteínas de Transporte/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/microbiologia , Comportamento Alimentar/fisiologia , Feminino , Modelos Animais , Corpos Pedunculados/citologia , Neurônios/metabolismo , Odorantes , Pectobacterium carotovorum/patogenicidade , Pseudomonas/patogenicidade , Receptores Odorantes/genética , Receptores Odorantes/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...