Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 363: 121398, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852404

RESUMO

Scaling irrigated agriculture is a global strategy to mitigate food insecurity concerns. While expanding irrigated agriculture is critical to meeting food production demands, it is important to consider how these land use and land cover changes (LULCC) may alter the water resources of landscapes and impact the spatiotemporal epidemiology of disease. Here, a generalizable method is presented to inform irrigation development decision-making aimed at increasing crop production through irrigation while simultaneously mitigating malaria risk to surrounding communities. Changes to the spatiotemporal patterns of malaria vector (Anopheles gambiae s.s.) suitability, driven by irrigated agricultural expansion, are presented for Malawi's rainy and dry seasons. The methods presented may be applied to other geographical areas where sufficient irrigation and malaria prevalence data are available. Results show that approximately 8.60% and 1.78% of Malawi is maximally suitable for An. gambiae s.s. breeding in the rainy and dry seasons, respectively. However, the proposed LULCC from irrigated agriculture increases the maximally suitable land area in both seasons: 15.16% (rainy) and 2.17% (dry). Proposed irrigation development sites are analyzed and ranked according to their likelihood of increasing malaria risk for those closest to the schemes. Results illustrate how geospatial information on the anticipated change to the malaria landscape driven by increasing irrigated agricultural extent can assist in altering development plans, amending policies, or reassessing water resource management strategies to mitigate expected changes in malaria risk.


Assuntos
Irrigação Agrícola , Malária , Recursos Hídricos , Malária/prevenção & controle , Malaui , Doenças Transmitidas por Vetores/prevenção & controle , Animais , Estações do Ano , Agricultura/métodos , Anopheles
2.
Int J Health Geogr ; 22(1): 31, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974150

RESUMO

BACKGROUND: African trypanosomiasis is a tsetse-borne parasitic infection that affects humans, wildlife, and domesticated animals. Tsetse flies are endemic to much of Sub-Saharan Africa and a spatial and temporal understanding of tsetse habitat can aid surveillance and support disease risk management. Problematically, current fine spatial resolution remote sensing data are delivered with a temporal lag and are relatively coarse temporal resolution (e.g., 16 days), which results in disease control models often targeting incorrect places. The goal of this study was to devise a heuristic for identifying tsetse habitat (at a fine spatial resolution) into the future and in the temporal gaps where remote sensing and proximal data fail to supply information. METHODS: This paper introduces a generalizable and scalable open-access version of the tsetse ecological distribution (TED) model used to predict tsetse distributions across space and time, and contributes a geospatial Bayesian Maximum Entropy (BME) prediction model trained by TED output data to forecast where, herein the Morsitans group of tsetse, persist in Kenya, a method that mitigates the temporal lag problem. This model facilitates identification of tsetse habitat and provides critical information to control tsetse, mitigate the impact of trypanosomiasis on vulnerable human and animal populations, and guide disease minimization in places with ephemeral tsetse. Moreover, this BME analysis is one of the first to utilize cluster and parallel computing along with a Monte Carlo analysis to optimize BME computations. This allows for the analysis of an exceptionally large dataset (over 2 billion data points) at a finer resolution and larger spatiotemporal scale than what had previously been possible. RESULTS: Under the most conservative assessment for Kenya, the BME kriging analysis showed an overall prediction accuracy of 74.8% (limited to the maximum suitability extent). In predicting tsetse distribution outcomes for the entire country the BME kriging analysis was 97% accurate in its forecasts. CONCLUSIONS: This work offers a solution to the persistent temporal data gap in accurate and spatially precise rainfall predictions and the delayed processing of remotely sensed data collectively in the - 45 days past to + 180 days future temporal window. As is shown here, the BME model is a reliable alternative for forecasting future tsetse distributions to allow preplanning for tsetse control. Furthermore, this model provides guidance on disease control that would otherwise not be available. These 'big data' BME methods are particularly useful for large domain studies. Considering that past BME studies required reduction of the spatiotemporal grid to facilitate analysis. Both the GEE-TED and the BME libraries have been made open source to enable reproducibility and offer continual updates into the future as new remotely sensed data become available.


Assuntos
Tripanossomíase Africana , Moscas Tsé-Tsé , Animais , Humanos , Teorema de Bayes , Entropia , Reprodutibilidade dos Testes , Tripanossomíase Africana/epidemiologia , Tripanossomíase Africana/parasitologia , Moscas Tsé-Tsé/parasitologia
3.
Ecol Process ; 11(1): 65, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36397837

RESUMO

Background: Transitional economies in Southeast Asia-a distinct group of developing countries-have experienced rapid urbanization in the past several decades due to the economic transition that fundamentally changed the function of their economies, societies and the environment. Myanmar, one of the least developed transitional economies in Southeast Asia, increased urbanization substantially from 25% in 1990 to 31% in 2019. However, major knowledge gaps exist in understanding the changes in urban land use and land cover and environment and their drivers in its cities. Methods: We studied Yangon, the largest city in Myanmar, for the urbanization, environmental changes, and the underlying driving forces in a radically transitioned economy in the developing world. Based on satellite imagery and historic land use maps, we quantified the expansion of urban built-up land and constructed the land conversion matrix from 1990 through 2020. We also used three air pollutants to illustrate the changes in environmental conditions. We analyzed the coupled dynamics among urbanization, economic development, and environmental changes. Through conducting a workshop with 20 local experts, we further analyzed the influence of human systems and natural systems on Yangon's urbanization and sustainability. Results: The city of Yangon expanded urban built-up land rapidly from 1990 to 2000, slowed down from 2000 to 2010, but gained momentum again from 2010 to 2020, with most newly added urban built-up land appearing to be converted from farmland and green land in both 1990-2000 and 2010-2020. Furthermore, the air pollutant concentration of CO decreased, but that of NO2 and PM2.5 increased in recent years. A positive correlation exists between population and economic development and the concentration of PM2.5 is highly associated with population, the economy, and the number of vehicles. Finally, the expert panel also identified other potential drivers for urbanization, including the extreme climate event of Cyclone Nargis, capital relocation, and globalization. Conclusions: Our research highlights the dramatic expansion of urban land and degradation of urban environment measured by air pollutants and interdependent changes between urbanization, economic development, and environmental changes.

4.
Sci Total Environ ; 837: 155758, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35533863

RESUMO

In Africa, achieving sustainable agricultural intensification-increasing agricultural output without deleterious environmental impacts or converting more land for cultivation-will depend greatly on the actions of smallholder farmers and the policies that influence them. Whatever the future holds, the vast majority of farmers right now are small. Using multiple lines of evidence across disciplines, we examine trends in productivity of land and fertilizers in Malawi. Unfortunately, our effort uncovers disturbing trends that indicate intensification and sustainability are at risk. Two time-series datasets of satellite-based vegetative indices show a generally flat but highly variable trend in the productivity of agricultural land with epochs of steep decline. This is notably despite substantial (and successful) government effort to promote fertilizer use. We also compile evidence from several studies over three decades that use field-level data from farmers and suggest substantial declining maize yield response to fertilizer over time. These trends are consistent with soil degradation, the disappearance of fallow land and minimal investment in rehabilitation practices in densely populated areas, putting agricultural productivity in jeopardy. These signs of the harmful impacts that narrow approaches to productivity improvement may be having in Malawi are an early warning sign to policy makers in Malawi and around the continent that a more holistic and nuanced strategy is necessary for sustainable intensification in agriculture.


Assuntos
Agricultura , Fertilizantes , Fazendeiros , Fertilizantes/análise , Humanos , Malaui , Solo
5.
Sci Rep ; 10(1): 15487, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968122

RESUMO

Climate change, food security, and environmental sustainability are pressing issues faced by today's global population. As production demands increase and climate threatens crop productivity, agricultural research develops innovative technologies to meet these challenges. Strategies include biodiverse cropping arrangements, new crop introductions, and genetic modification of crop varieties that are resilient to climatic and environmental stressors. Geography in particular is equipped to address a critical question in this pursuit-when and where can crop system innovations be introduced? This manuscript presents a case study of the geographic scaling potential utilizing common bean, delivers an open access Google Earth Engine geovisualization application for mapping the fundamental climate niche of any crop, and discusses food security and legume biodiversity in Sub-Saharan Africa. The application is temporally agile, allowing variable growing season selections and the production of 'living maps' that are continually producible as new data become available. This is an essential communication tool for the future, as practitioners can evaluate the potential geographic range for newly-developed, experimental, and underrepresented crop varieties for facilitating sustainable and innovative agroecological solutions.

6.
PLoS One ; 15(8): e0235697, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32750051

RESUMO

In an era of big data, the availability of satellite-derived global climate, terrain, and land cover imagery presents an opportunity for modeling the suitability of malaria disease vectors at fine spatial resolutions, across temporal scales, and over vast geographic extents. Leveraging cloud-based geospatial analytical tools, we present an environmental suitability model that considers water resources, flow accumulation areas, precipitation, temperature, vegetation, and land cover. In contrast to predictive models generated using spatially and temporally discontinuous mosquito presence information, this model provides continuous fine-spatial resolution information on the biophysical drivers of suitability. For the purposes of this study the model is parameterized for Anopheles gambiae s.s. in Malawi for the rainy (December-March) and dry seasons (April-November) in 2017; however, the model may be repurposed to accommodate different mosquito species, temporal periods, or geographical boundaries. Final products elucidate the drivers and potential habitat of Anopheles gambiae s.s. Rainy season results are presented by quartile of precipitation; Quartile four (Q4) identifies areas most likely to become inundated and shows 7.25% of Malawi exhibits suitable water conditions (water only) for Anopheles gambiae s.s., approximately 16% for water plus another factor, and 8.60% is maximally suitable, meeting suitability thresholds for water presence, terrain characteristics, and climatic conditions. Nearly 21% of Malawi is suitable for breeding based on land characteristics alone and 28.24% is suitable according to climate and land characteristics. Only 6.14% of the total land area is suboptimal. Dry season results show 25.07% of the total land area is suboptimal or unsuitable. Approximately 42% of Malawi is suitable based on land characteristics alone during the dry season, and 13.11% is suitable based on land plus another factor. Less than 2% meets suitability criteria for climate, water, and land criteria. Findings illustrate environmental drivers of suitability for malaria vectors, providing an opportunity for a more comprehensive approach to malaria control that includes not only modeled species distributions, but also the underlying drivers of suitability for a more effective approach to environmental management.


Assuntos
Big Data , Malária/epidemiologia , Saúde Pública , Animais , Anopheles/fisiologia , Cruzamento , Clima , Humanos , Malária/transmissão , Malaui/epidemiologia , Mosquitos Vetores/fisiologia , Ferramenta de Busca , Estações do Ano
7.
Environ Res ; 159: 283-290, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28825982

RESUMO

Modern plant breeding tends to focus on maximizing yield, with one of the most ubiquitous implementations being shorter-duration crop varieties. It is indisputable that these breeding efforts have resulted in greater yields in ideal circumstances; however, many farmed locations across Africa suffer from one or more conditions that limit the efficacy of modern short-duration hybrids. In view of global change and increased necessity for intensification, perennial grains and long-duration varieties offer a nature-based solution for improving farm productivity and smallholder livelihoods in suboptimal agricultural areas. Specific conditions where perennial grains should be considered include locations where biophysical and social constraints reduce agricultural system efficiency, and where conditions are optimal for crop growth. Using a time-series of remotely-sensed data, we locate the marginal agricultural lands of Africa, identifying suboptimal temperature and precipitation conditions for the dominant crop, i.e., maize, as well as optimal climate conditions for two perennial grains, pigeonpea and sorghum. We propose that perennial grains offer a lower impact, sustainable nature-based solution to this subset of climatic drivers of marginality. Using spatial analytic methods and satellite-derived climate information, we demonstrate the scalability of perennial pigeonpea and sorghum across Africa. As a nature-based solution, we argue that perennial grains offer smallholder farmers of marginal lands a sustainable solution for enhancing resilience and minimizing risk in confronting global change, while mitigating social and edaphic drivers of low and variable production.


Assuntos
Agricultura/métodos , Clima , Produtos Agrícolas/crescimento & desenvolvimento , Grão Comestível/crescimento & desenvolvimento , Mapeamento Geográfico , África , Cajanus/crescimento & desenvolvimento , Sorghum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento
8.
Nat Plants ; 3: 17013, 2017 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-28263322

RESUMO

The Malawian Farm Input Subsidy Programme (FISP) has received praise as a proactive policy that has transformed the nation's food security, yet irreconcilable differences exist between maize production estimates distributed by the Food and Agriculture Organization of the United Nations (FAO), the Malawi Ministry of Agriculture and Food Security (MoAFS) and the National Statistical Office (NSO) of Malawi. These differences illuminate yield-reporting deficiencies and the value that alternative, politically unbiased yield estimates could play in understanding policy impacts. We use net photosynthesis (PsnNet) as an objective source of evidence to evaluate production history and production potential under a fertilizer input scenario. Even with the most generous harvest index (HI) and area manipulation to match a reported error, we are unable to replicate post-FISP production gains. In addition, we show that the spatial delivery of FISP may have contributed to popular perception of widespread maize improvement. These triangulated lines of evidence suggest that FISP may not have been the success it was thought to be. Lastly, we assert that fertilizer subsidies may not be sufficient or sustainable strategies for production gains in Malawi.


Assuntos
Fazendas/economia , Financiamento Governamental/economia , Abastecimento de Alimentos/métodos , Fotossíntese , Zea mays , Produtos Agrícolas/crescimento & desenvolvimento , Fertilizantes/estatística & dados numéricos , Abastecimento de Alimentos/economia , Malaui , Zea mays/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...