Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22272177

RESUMO

BackgroundThe third wave of COVID-19 in England peaked in January 2022 resulting from the rapid transmission of the Omicron variant. However, rates of hospitalisations and deaths were substantially lower than in the first and second waves MethodsIn the REal-time Assessment of Community Transmission-1 (REACT-1) study we obtained data from a random sample of 94,950 participants with valid throat and nose swab results by RT-PCR during round 18 (8 February to 1 March 2022). FindingsWe estimated a weighted mean SARS-CoV-2 prevalence of 2.88% (95% credible interval [CrI] 2.76-3.00), with a within-round reproduction number (R) overall of 0.94 (0{middle dot}91-0.96). While within-round weighted prevalence fell among children (aged 5 to 17 years) and adults aged 18 to 54 years, we observed a level or increasing weighted prevalence among those aged 55 years and older with an R of 1.04 (1.00-1.09). Among 1,195 positive samples with sublineages determined, only one (0.1% [0.0-0.5]) corresponded to AY.39 Delta sublineage and the remainder were Omicron: N=390, 32.7% (30.0-35.4) were BA.1; N=473, 39.6% (36.8-42.5) were BA.1.1; and N=331, 27.7% (25.2-30.4) were BA.2. We estimated an R additive advantage for BA.2 (vs BA.1 or BA.1.1) of 0.40 (0.36-0.43). The highest proportion of BA.2 among positives was found in London. InterpretationIn February 2022, infection prevalence in England remained high with level or increasing rates of infection in older people and an uptick in hospitalisations. Ongoing surveillance of both survey and hospitalisations data is required. FundingDepartment of Health and Social Care, England. O_TEXTBOXResearch in contextO_ST_ABSEvidence before this studyC_ST_ABSA search of PubMed using title or abstract terms ("Omicron" or "BA.1" or "BA.2") and "prevalence" without language or other restrictions, identified 51 results (with no duplicates). All 51 results were evaluated, with 18 deemed relevant. One study focused on Omicron case rates in South Africa during the early stage after the discovery of the new variant (November 2021), one described genomic surveillance of SARS-CoV-2 in the USA (June - December 2021), one analysed clinical outcomes based on health records (January - December 2021), one described the results of whole-genome sequencing of SARS-CoV-2 samples collected in North Africa (March - December 2021), and one was from a previous REACT survey round (November - December 2021). The others focused on the mutation distribution of Omicron, disease severity, immune response, vaccine effectiveness, and prevalence in animal hosts. Added value of this studyWe analysed data from throat and nose swabs collected at home by a randomly selected sample of residents of England, aged 5 years and older, obtained during round 18 (8 February to 1 March 2022) of the REal-time Assessment of Community Transmission-1 (REACT-1) study. We estimated a weighted prevalence of SARS-CoV-2 of 2.88% (95% CrI 2.76-3.00) in England in February 2022, which was substantially lower than that estimated in January 2022 (4.41% [4.25-4.56]). The within-round dynamics differed by age group with weighted prevalence falling among children (aged 5 to 17 years) with an R of 0.79 (0.74-0.84) and adults aged 18 to 54 years with an R of 0.92 (0.89-0.96), in contrast to the level or increasing weighted prevalence among those aged 55 years and older with an R of 1.04 (1.00-1.09). Exponential models estimated a daily growth rate advantage of 0.12 (0.11-0.13) in the odds of BA.2 (vs BA.1 or BA.1.1) corresponding to an R additive advantage of 0.40 (0.36-0.43). Implications of all the available evidenceRandom community surveys of SARS-CoV-2 provide robust insights into transmission dynamics and identify groups at heightened risk of infection based on estimates of population prevalence that are unbiased by test-seeking behaviour or availability of tests. In England, replacement by BA.2 of other Omicron sublineages, the level or increasing rates of infection in older people and the uptick in hospitalisations in England toward the end of February 2022 require ongoing surveillance, both to monitor the levels of current (and future) SARS-CoV-2 variants and the risks of severe disease. C_TEXTBOX

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22270365

RESUMO

BackgroundRapid transmission of the SARS-CoV-2 Omicron variant has led to the highest ever recorded case incidence levels in many countries around the world. MethodsThe REal-time Assessment of Community Transmission-1 (REACT-1) study has been characterising the transmission of the SARS-CoV-2 virus using RT-PCR test results from self-administered throat and nose swabs from randomly-selected participants in England at ages 5 years and over, approximately monthly since May 2020. Round 17 data were collected between 5 and 20 January 2022 and provide data on the temporal, socio-demographic and geographical spread of the virus, viral loads and viral genome sequence data for positive swabs. ResultsFrom 102,174 valid tests in round 17, weighted prevalence of swab positivity was 4.41% (95% credible interval [CrI], 4.25% to 4.56%), which is over three-fold higher than in December 2021 in England. Of 3,028 sequenced positive swabs, 2,393 lineages were determined and 2,374 (99.2%) were Omicron including 19 (0.80% of all Omicron lineages) cases of BA.2 sub-lineage and one BA.3 (0.04% of all Omicron) detected on 17 January 2022, and only 19 (0.79%) were Delta. The growth of the BA.2 Omicron sub-lineage against BA.1 and its sub-lineage BA.1.1 indicated a daily growth rate advantage of 0.14 (95% CrI, 0.03, 0.28) for BA.2, which corresponds to an additive R advantage of 0.46 (95% CrI, 0.10, 0.92). Within round 17, prevalence was decreasing overall (R=0.95, 95% CrI, 0.93, 0.97) but increasing in children aged 5 to 17 years (R=1.13, 95% CrI, 1.09, 1.18). Those 75 years and older had a swab-positivity prevalence of 2.46% (95% CI, 2.16%, 2.80%) reflecting a high level of infection among a highly vulnerable group. Among the 3,613 swab-positive individuals reporting whether or not they had had previous infection, 2,334 (64.6%) reported previous confirmed COVID-19. Of these, 64.4% reported a positive test from 1 to 30 days before their swab date. Risks of infection were increased among essential/key workers (other than healthcare or care home workers) with mutually adjusted Odds Ratio (OR) of 1.15 (95% CI, 1.05, 1.26), people living in large compared to single-person households (6+ household size OR 1.73; 95% CI, 1.44, 2.08), those living in urban vs rural areas (OR 1.24, 95% CI, 1.13, 1.35) and those living in the most vs least deprived areas (OR 1.34, 95% CI, 1.20, 1.49). ConclusionsWe observed unprecedented levels of infection with SARS-CoV-2 in England in January 2022, an almost complete replacement of Delta by Omicron, and evidence for a growth advantage for BA.2 compared to BA.1. The increase in the prevalence of infection with Omicron among children (aged 5 to 17 years) during January 2022 could pose a risk to adults, despite the current trend for prevalence in adults to decline. (Funded by the Department of Health and Social Care in England.)

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21268252

RESUMO

BackgroundThe highest-ever recorded numbers of daily severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections in England has been observed during December 2021 and have coincided with a rapid rise in the highly transmissible Omicron variant despite high levels of vaccination in the population. Although additional COVID-19 measures have been introduced in England and internationally to contain the epidemic, there remains uncertainty about the spread and severity of Omicron infections among the general population. MethodsThe REal-time Assessment of Community Transmission-1 (REACT-1) study has been monitoring the prevalence of SARS-CoV-2 infection in England since May 2020. REACT-1 obtains self-administered throat and nose swabs from a random sample of the population of England at ages 5 years and over. Swabs are tested for SARS-CoV-2 infection by reverse transcription polymerase chain reaction (RT-PCR) and samples testing positive are sent for viral genome sequencing. To date 16 rounds have been completed, each including [~]100,000 or more participants with data collected over a period of 2 to 3 weeks per month. Socio-demographic, lifestyle and clinical information (including previous history of COVID-19 and symptoms prior to swabbing) is collected by online or telephone questionnaire. Here we report results from round 14 (9-27 September 2021), round 15 (19 October - 05 November 2021) and round 16 (23 November - 14 December 2021) for a total of 297,728 participants with a valid RT-PCR test result, of whom 259,225 (87.1%) consented for linkage to their NHS records including detailed information on vaccination (vaccination status, date). We used these data to estimate community prevalence and trends by age and region, to evaluate vaccine effectiveness against infection in children ages 12 to 17 years, and effect of a third (booster) dose in adults, and to monitor the emergence of the Omicron variant in England. ResultsWe observed a high overall prevalence of 1.41% (1.33%, 1.51%) in the community during round 16. We found strong evidence of an increase in prevalence during round 16 with an estimated reproduction number R of 1.13 (1.06, 1.09) for the whole of round 16 and 1.27 (1.14, 1.40) when restricting to observations from 1 December onwards. The reproduction number in those aged 18-54 years was estimated at 1.23 (1.14, 1.33) for the whole of round 16 and 1.41 (1.23, 1.61) from 1 December. Our data also provide strong evidence of a steep increase in prevalence in London with an estimated R of 1.62 (1.34, 1.93) from 1 December onwards and a daily prevalence reaching 6.07% (4.06%, 9.00%) on 14 December 2021. As of 1 to 11 December 2021, of the 275 lineages determined, 11 (4.0%) corresponded to the Omicron variant. The first Omicron infection was detected in London on 3 December, and subsequent infections mostly appeared in the South of England. The 11 Omicron cases were all aged 18 to 54 years, double-vaccinated (reflecting the large numbers of people who have received two doses of vaccine in this age group) but not boosted, 9 were men, 5 lived in London and 7 were symptomatic (5 with classic COVID-19 symptoms: loss or change of sense of smell or taste, fever, persistent cough), 2 were asymptomatic, and symptoms were unknown for 2 cases. The proportion of Omicron (vs Delta or Delta sub-lineages) was found to increase rapidly with a daily increase of 66.0% (32.7%, 127.3%) in the odds of Omicron (vs. Delta) infection, conditional on swab positivity. Highest prevalence of swab positivity by age was observed in (unvaccinated) children aged 5 to 11 years (4.74% [4.15%, 5.40%]) similar to the prevalence observed at these ages in round 15. In contrast, prevalence in children aged 12 to 17 years more than halved from 5.35% (4.78%, 5.99%) in round 15 to 2.31% (1.91%, 2.80%) in round 16. As of 14 December 2021, 76.6% children at ages 12 to 17 years had received at least one vaccine dose; we estimated that vaccine effectiveness against infection was 57.9% (44.1%, 68.3%) in this age group. In addition, the prevalence of swab positivity in adults aged 65 years and over fell by over 40% from 0.84% (0.72%, 0.99%) in round 15 to 0.48% (0.39%,0.59%) in round 16 and for those aged 75 years and over it fell by two-thirds from 0.63% (0.48%,0.82%) to 0.21% (0.13%,0.32%). At these ages a high proportion of participants (>90%) had received a third vaccine dose; we estimated that adults having received a third vaccine dose had a three- to four-fold lower risk of testing positive compared to those who had received two doses. ConclusionA large fall in swab positivity from round 15 to round 16 among 12 to 17 year olds, most of whom have been vaccinated, contrasts with the continuing high prevalence among 5 to 11 year olds who have largely not been vaccinated. Likewise there were large falls in swab positivity among people aged 65 years and over, the vast majority of whom have had a third (booster) vaccine dose; these results reinforce the importance of the vaccine and booster campaign. However, the rapidly increasing prevalence of SARS-CoV-2 infections in England during December 2021, coincident with the rapid rise of Omicron infections, may lead to renewed pressure on health services. Additional measures beyond vaccination may be needed to control the current wave of infections and prevent health services (in England and other countries) from being overwhelmed. SummaryThe unprecedented rise in SARS-CoV-2 infections is concurrent with rapid spread of the Omicron variant in England and globally. We analysed prevalence of SARS-CoV-2 and its dynamics in England from end of November to mid-December 2021 among almost 100,000 participants from the REACT-1 study. Prevalence was high during December 2021 with rapid growth nationally and in London, and of the proportion of infections due to Omicron. We observed a large fall in swab positivity among mostly vaccinated older children (12-17 years) compared with unvaccinated younger children (5-11 years), and in adults who received a third vs. two doses of vaccine. Our results reiterate the importance of vaccination and booster campaigns; however, additional measures may be needed to control the rapid growth of the Omicron variant.

4.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21267806

RESUMO

BackgroundIt has been nearly a year since the first vaccinations against SARS-CoV-2 were delivered in England. The third wave of COVID-19 in England began in May 2021 as the Delta variant began to outcompete and largely replace other strains. The REal-time Assessment of Community Transmission-1 (REACT-1) series of community surveys for SARS-CoV-2 infection has provided insights into transmission dynamics since May 2020. Round 15 of the REACT-1 study was carried out from 19 October to 5 November 2021. MethodsWe estimated prevalence of SARS-CoV2 infection and used multiple logistic regression to analyse associations between SARS-CoV-2 infection in England and demographic and other risk factors, based on RT-PCR results from self-administered throat and nose swabs in over 100,000 participants. We estimated (single-dose) vaccine effectiveness among children aged 12 to 17 years, and among adults compared swab-positivity in people who had received a third (booster) dose with those who had received two vaccine doses. We used splines to analyse time trends in swab-positivity. ResultsDuring mid-October to early-November 2021, weighted prevalence was 1.57% (1.48%, 1.66%) compared to 0.83% (0.76%, 0.89%) in September 2021 (round 14). Weighted prevalence increased between rounds 14 and 15 across most age groups (including older ages, 65 years and over) and regions, with average reproduction number across rounds of R=1.09 (1.08, 1.11). During round 15, there was a fall in prevalence from a maximum around 20-21 October, with an R of 0.76 (0.70, 0.83), reflecting falls in prevalence at ages 17 years and below and 18 to 54 years. School-aged children had the highest weighted prevalence of infection: 4.95% (4.39%, 5.58%) in those aged 5 to 12 years and 5.21% (4.61%, 5.87%) in those aged 13 to 17 years. In multiple logistic regression, age, sex, key worker status and presence of one or more children in the home were associated with swab positivity. There was evidence of heterogeneity between rounds in swab positivity rates among vaccinated individuals at ages 18 to 64 years, and differences in key demographic and other variables between vaccinated and unvaccinated adults at these ages. Vaccine effectiveness against infection in children was estimated to be 56.2% (41.3%, 67.4%) in rounds 13, 14 and 15 combined, adjusted for demographic factors, with a similar estimate obtained for round 15 only. Among adults we found that those who received a third dose of vaccine were less likely to test positive compared to those who received only two vaccine doses, with adjusted odds ratio (OR) =0.38 (0.26, 0.55). DiscussionSwab-positivity was very high at the start of round 15, reaching a maximum around 20 to 21 October 2021, and then falling through late October with an uncertain trend in the last few days of data collection. The observational nature of survey data and the relatively small proportion of unvaccinated adults call into question the comparability of vaccinated and unvaccinated groups at this relatively late stage in the vaccination programme. However, third vaccine doses for eligible adults and the vaccination of children aged 12 years and over are associated with lower infection risk and, thus, remain a high priority (with possible extension to children aged 5-12 years). These should help reduce SARS-CoV-2 transmission during the winter period when healthcare demands typically rise.

5.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21266054

RESUMO

BackgroundEthnically diverse and socio-economically deprived communities have been differentially affected by the COVID-19 pandemic in the UK. MethodUsing a multilevel regression model we assess the time-varying association between SARS-CoV-2 infections and areal level deprivation and ethnicity. We separately consider weekly test positivity rate (number of positive tests over the total number of tests) and estimated unbiased prevalence (proportion of individuals in the population who would test positive) at the Lower Tier Local Authority (LTLA) level. The model also adjusts for age, urbanicity, vaccine uptake and spatio-temporal correlation structure. FindingsComparing the least deprived and predominantly White areas with most deprived and predominantly non-White areas over the whole study period, the weekly positivity rate increases by 13% from 2{middle dot}97% to 3{middle dot}35%. Similarly, prevalence increases by 10% from 0{middle dot}37% to 0{middle dot}41%. Deprivation has a stronger effect until October 2020, while the effect of ethnicity becomes slightly more pronounced at the peak of the second wave and then again in May-June 2021. Not all BAME groups were equally affected: in the second wave of the pandemic, LTLAs with large South Asian populations were the most affected, whereas areas with large Black populations did not show increased values for either outcome during the entire period under analysis. InterpretationAt the area level, IMD and BAME% are both associated with an increased COVID-19 burden in terms of prevalence (disease spread) and test positivity (disease monitoring), and the strength of association varies over the course of the pandemic. The consistency of results across the two outcome measures suggests that community level characteristics such as deprivation and ethnicity have a differential impact on disease exposure or susceptibility rather than testing access and habits. FundingsEPSRC, MRC, The Alan Turing Institute, NIH, UKHSA, DHSC, NIHR

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21265877

RESUMO

BackgroundThe third wave of COVID-19 in England coincided with the rapid spread of the Delta variant of SARS-CoV-2 from the end of May 2021. Case incidence data from the national testing programme (Pillar 2) in England may be affected by changes in testing behaviour and other biases. Community surveys may provide important contextual information to inform policy and the public health response. MethodsWe estimated patterns of community prevalence of SARS-CoV-2 infection in England using RT-PCR swab-positivity, demographic and other risk factor data from round 15 (interim) of the REal-time Assessment of Community Transmission-1 (REACT-1) study (round 15a, carried out from 19 to 29 October 2021). We compared these findings with those from round 14 (9 to 27 September 2021). ResultsDuring mid- to late-October 2021 (round 15a) weighted prevalence was 1.72% (1.61%, 1.84%) compared to 0.83% (0.76%, 0.89%) in September 2021 (round 14). The overall reproduction number (R) from round 14 to round 15a was 1.12 (1.11, 1.14) with increases in prevalence over this period (September to October) across age groups and regions except Yorkshire and The Humber. However, within round 15a (mid- to late-October) there was evidence of a fall in prevalence with R of 0.76 (0.65, 0.88). The highest weighted prevalence was observed among children aged 5 to 12 years at 5.85% (5.10%, 6.70%) and 13 to 17 years at 5.75% (5.02%, 6.57%). At regional level, there was an almost four-fold increase in weighted prevalence in South West from round 14 at 0.59% (0.43%,0.80%) to round 15a at 2.18% (1.84%, 2.58%), with highest smoothed prevalence at subregional level also found in South West in round 15a. Age, sex, key worker status, and presence of children in the home jointly contributed to the risk of swab-positivity. Among the 126 sequenced positive swabs obtained up until 23 October, all were Delta variant; 13 (10.3%) were identified as the AY.4.2 sub-lineage. DiscussionWe observed the highest overall prevalence of swab-positivity seen in the REACT-1 study in England to date in round 15a (October 2021), with a two-fold rise in swab-positivity from round 14 (September 2021). Despite evidence of a fall in prevalence from mid- to late-October 2021, prevalence remains high, particularly in school-aged children, with evidence also of higher prevalence in households with one or more children. Thus, vaccination of children aged 12 and over remains a high priority (with possible extension to children aged 5-12) to help reduce within-household transmission and disruptions to education, as well as among adults, to lessen the risk of serious disease among those infected.

7.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21264965

RESUMO

BackgroundEngland experienced a third wave of the COVID-19 epidemic from end May 2021 coinciding with the rapid spread of Delta variant. Since then, the population eligible for vaccination against COVID-19 has been extended to include all 12-15-year-olds, and a booster programme has been initiated among adults aged 50 years and over, health care and care home workers, and immunocompromised people. Meanwhile, schoolchildren have returned to school often with few COVID-19-related precautions in place. MethodsIn the REal-time Assessment of Community Transmission-1 (REACT-1) study, throat and nose swabs were sent to non-overlapping random samples of the population aged 5 years and over in England. We analysed prevalence of SARS-CoV-2 using reverse transcription-polymerase chain reaction (RT-PCR) swab-positivity data from REACT-1 round 14 (between 9 and 27 September 2021). We combined results for round 14 with round 13 (between 24 June and 12 July 2021) and estimated vaccine effectiveness and prevalence of swab-positivity among double-vaccinated individuals. Unlike all previous rounds, in round 14, we switched from dry swabs transported by courier on a cold chain to wet swabs using saline. Also, at random, 50% of swabs (not chilled until they reached the depot) were transported by courier and 50% were sent through the priority COVID-19 postal service. ResultsWe observed stable or rising prevalence (with an R of 1.03 (0.94, 1.14) overall) during round 14 with a weighted prevalence of 0.83% (0.76%, 0.89%). The highest weighted prevalence was found in children aged 5 to 12 years at 2.32% (1.96%, 2.73%) and 13 to 17 years at 2.55% (2.11%, 3.08%). All positive virus samples analysed correspond to the Delta variant or sub-lineages of Delta with one instance of the E484K escape mutation detected. The epidemic was growing in those aged 17 years and under with an R of 1.18 (1.03, 1.34), but decreasing in those aged 18 to 54 years with an R of 0.81 (0.68, 0.97). For all participants and all vaccines combined, at ages 18 to 64 years, vaccine effectiveness against infection (rounds 13 and 14 combined) was estimated to be 62.8% (49.3%, 72.7%) after two doses compared to unvaccinated people when adjusted for round, age, sex, index of multiple deprivation, region and ethnicity; the adjusted estimate was 44.8% (22.5%, 60.7%) for AstraZeneca and 71.3% (56.6%, 81.0%) for Pfizer-BioNTech, and for all vaccines combined it was 66.4% (49.6%, 77.6%) against symptomatic infection (one or more of 26 surveyed symptoms in month prior). Across rounds 13 and 14, at ages 18 years and over, weighted prevalence of swab-positivity was 0.55% (0.50%, 0.61%) for those who received their second dose 3-6 months before their swab compared to 0.35% (0.31%, 0.40%) for those whose second dose was within 3 months of their swab, while weighted prevalence among unvaccinated individuals was1.76% (1.60%, 1.95%). In round 14, age group, region, key worker status, and household size jointly contributed to the risk of higher prevalence of swab-positivity. DiscussionIn September 2021 infections were increasing exponentially in the 5-to-17-year age group coinciding with the start of the autumn school term in England. Relatively few schoolchildren aged 5 to 17 years have been vaccinated in the UK though single doses are now being offered to those aged 12 years and over. In adults, the higher prevalence of swab-positivity following two doses of vaccine from 3 to 6 months compared to within 3 months of second dose supports the use of a booster vaccine. It is important that the vaccination programme maintains high coverage and reaches children and unvaccinated or partially vaccinated adults to reduce transmission and associated disruptions to work and education.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21260185

RESUMO

BackgroundDespite high levels of vaccination in the adult population, cases of COVID-19 have risen exponentially in England since the start of May 2021 driven by the Delta variant. However, with far fewer hospitalisations and deaths per case during the recent growth in cases compared with 2020, it is intended that all remaining social distancing legislation in England will be removed from 19 July 2021. MethodsWe report interim results from round 13 of the REal-time Assessment of Community Transmission-1 (REACT-1) study in which a cross-sectional sample of the population of England was asked to provide a throat and nose swab for RT-PCR and to answer a questionnaire. Data collection for this report (round 13 interim) was from 24 June to 5 July 2021. ResultsIn round 13 interim, we found 237 positives from 47,729 swabs giving a weighted prevalence of 0.59% (0.51%, 0.68%) which was approximately four-fold higher compared with round 12 at 0.15% (0.12%, 0.18%). This resulted from continued exponential growth in prevalence with an average doubling time of 15 (13, 17) days between round 12 and round 13. However, during the recent period of round 13 interim only, we observed a shorter doubling time of 6.1 (4.0, 12) days with a corresponding R number of 1.87 (1.40, 2.45). There were substantial increases in all age groups under the age of 75 years, and especially at younger ages, with the highest prevalence in 13 to 17 year olds at 1.33% (0.97%, 1.82%) and in 18 to 24 years olds at 1.40% (0.89%, 2.18%). Infections have increased in all regions with the largest increase in London where prevalence increased more than eight-fold from 0.13% (0.08%, 0.20%) in round 12 to 1.08% (0.79%, 1.47%) in round 13 interim. Overall, prevalence was over 3 times higher in the unvaccinated compared with those reporting two doses of vaccine in both round 12 and round 13 interim, although there was a similar proportional increase in prevalence in vaccinated and unvaccinated individuals between the two rounds. DiscussionWe are entering a critical period with a number of important competing processes: continued vaccination rollout to the whole adult population in England, increased natural immunity through infection, reduced social mixing of children during school holidays, increased proportion of mixing occurring outdoors during summer, the intended full opening of hospitality and entertainment and cessation of mandated social distancing and mask wearing. Surveillance programmes are essential during this next phase of the epidemic to provide clear evidence to the government and the public on the levels and trends in prevalence of infections and their relationship to vaccine coverage, hospitalisations, deaths and Long COVID.

9.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21259103

RESUMO

BackgroundEngland entered a third national lockdown from 6 January 2021 due to the COVID-19 pandemic. Despite a successful vaccine rollout during the first half of 2021, cases and hospitalisations have started to increase since the end of May as the SARS-CoV-2 Delta (B.1.617.2) variant increases in frequency. The final step of relaxation of COVID-19 restrictions in England has been delayed from 21 June to 19 July 2021. MethodsThe REal-time Assessment of Community Transmision-1 (REACT-1) study measures the prevalence of swab-positivity among random samples of the population of England. Round 12 of REACT-1 obtained self-administered swab collections from participants from 20 May 2021 to 7 June 2021; results are compared with those for round 11, in which swabs were collected from 15 April to 3 May 2021. ResultsBetween rounds 11 and 12, national prevalence increased from 0.10% (0.08%, 0.13%) to 0.15% (0.12%, 0.18%). During round 12, we detected exponential growth with a doubling time of 11 (7.1, 23) days and an R number of 1.44 (1.20, 1.73). The highest prevalence was found in the North West at 0.26% (0.16%, 0.41%) compared to 0.05% (0.02%, 0.12%) in the South West. In the North West, the locations of positive samples suggested a cluster in Greater Manchester and the east Lancashire area. Prevalence in those aged 5-49 was 2.5 times higher at 0.20% (0.16%, 0.26%) compared with those aged 50 years and above at 0.08% (0.06%, 0.11%). At the beginning of February 2021, the link between infection rates and hospitalisations and deaths started to weaken, although in late April 2021, infection rates and hospital admissions started to reconverge. When split by age, the weakened link between infection rates and hospitalisations at ages 65 years and above was maintained, while the trends converged below the age of 65 years. The majority of the infections in the younger group occurred in the unvaccinated population or those without a stated vaccine history. We observed the rapid replacement of the Alpha (B.1.1.7) variant of SARS-CoV-2 with the Delta variant during the period covered by rounds 11 and 12 of the study. DiscussionThe extent to which exponential growth continues, or slows down as a consequence of the continued rapid roll-out of the vaccination programme, including to young adults, requires close monitoring. Data on community prevalence are vital to track the course of the epidemic and inform ongoing decisions about the timing of further lifting of restrictions in England.

10.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21256818

RESUMO

Targeted surveillance testing schemes for SARS-CoV-2 focus on certain subsets of the population, such as individuals experiencing one or more of a prescribed list of symptoms. These schemes have routinely been used to monitor the spread of SARS-CoV-2 in countries across the world. The number of positive tests in a given region can provide local insights into important epidemiological parameters, such as prevalence and effective reproduction number. Moreover, targeted testing data has been used inform the deployment of localised non-pharmaceutical interventions. However, surveillance schemes typically suffer from ascertainment bias; the individuals who are tested are not necessarily representative of the wider population of interest. Here, we show that data from randomised testing schemes, such as the REACT study in the UK, can be used to debias fine-scale targeted testing data in order to provide accurate localised estimates of the number of infectious individuals. We develop a novel, integrative causal framework that explicitly models the process underlying the selection of individuals for targeted testing. The output from our model can readily be incorporated into longitudinal analyses to provide local estimates of the reproduction number. We apply our model to characterise the size of the infectious population in England between June 2020 and January 2021. Our local estimates of the effective reproduction number are predictive of future changes in positive case numbers. We also capture local increases in both prevalence and effective reproductive number in the South East from November 2020 to December 2020, reflecting the spread of the Kent variant. Our results illustrate the complementary roles of randomised and targeted testing schemes. Preparations for future epidemics should ensure the rapid deployment of both types of schemes to accurately monitor the spread of emerging and ongoing infectious diseases.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257144

RESUMO

BackgroundNational epidemic dynamics of SARS-CoV-2 infections are being driven by: the degree of recent indoor mixing (both social and workplace), vaccine coverage, intrinsic properties of the circulating lineages, and prior history of infection (via natural immunity). In England, infections, hospitalisations and deaths fell during the first two steps of the "roadmap" for exiting the third national lockdown. The third step of the roadmap in England takes place on 17 May 2021. MethodsWe report the most recent findings on community infections from the REal-time Assessment of Community Transmission-1 (REACT-1) study in which a swab is obtained from a representative cross-sectional sample of the population in England and tested using PCR. Round 11 of REACT-1 commenced self-administered swab-collection on 15 April 2021 and completed collections on 3 May 2021. We compare the results of REACT-1 round 11 to round 10, in which swabs were collected from 11 to 30 March 2021. ResultsBetween rounds 10 and 11, prevalence of swab-positivity dropped by 50% in England from 0.20% (0.17%, 0.23%) to 0.10% (0.08%, 0.13%), with a corresponding R estimate of 0.90 (0.87, 0.94). Rates of swab-positivity fell in the 55 to 64 year old group from 0.17% (0.12%, 0.25%) in round 10 to 0.06% (0.04%, 0.11%) in round 11. Prevalence in round 11 was higher in the 25 to 34 year old group at 0.21% (0.12%, 0.38%) than in the 55 to 64 year olds and also higher in participants of Asian ethnicity at 0.31% (0.16%, 0.60%) compared with white participants at 0.09% (0.07%, 0.11%). Based on sequence data for positive samples for which a lineage could be identified, we estimate that 92.3% (75.9%, 97.9%, n=24) of infections were from the B.1.1.7 lineage compared to 7.7% (2.1%, 24.1%, n=2) from the B.1.617.2 lineage. Both samples from the B.1.617.2 lineage were detected in London from participants not reporting travel in the previous two weeks. Also, allowing for suitable lag periods, the prior close alignment between prevalence of infections and hospitalisations and deaths nationally has diverged. DiscussionWe observed marked reductions in prevalence from March to April and early May 2021 in England reflecting the success of the vaccination programme and despite easing of restrictions during lockdown. However, there is potential upwards pressure on prevalence from the further easing of lockdown regulations and presence of the B.1.617.2 lineage. If prevalence rises in the coming weeks, policy-makers will need to assess the possible impact on hospitalisations and deaths. In addition, consideration should be given to other health and economic impacts if increased levels of community transmission occur.

12.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21255100

RESUMO

BackgroundIn England, hospitalisations and deaths due to SARS-CoV-2 have been falling consistently since January 2021 during the third national lockdown of the COVID-19 pandemic. The first significant relaxation of that lockdown occurred on 8 March when schools reopened. MethodsThe REal-time Assessment of Community Transmission-1 (REACT-1) study augments routine surveillance data for England by measuring swab-positivity for SARS-CoV-2 in the community. The current round, round 10, collected swabs from 11 to 30 March 2021 and is compared here to round 9, in which swabs were collected from 4 to 23 February 2021. ResultsDuring round 10, we estimated an R number of 1.00 (95% confidence interval 0.81, 1.21). Between rounds 9 and 10 we estimated national prevalence has dropped by [~]60% from 0.49% (0.44%, 0.55%) in February to 0.20% (0.17%, 0.23%) in March. There were substantial falls in weighted regional prevalence: in South East from 0.36% (0.29%, 0.44%) in round 9 to 0.07% (0.04%, 0.12%) in round 10; London from 0.60% (0.48%, 0.76%) to 0.16% (0.10%, 0.26%); East of England from 0.47% (0.36%, 0.60%) to 0.15% (0.10%, 0.24%); East Midlands from 0.59% (0.45%, 0.77%) to 0.19% (0.13%, 0.28%); and North West from 0.69% (0.54%, 0.88%) to 0.31% (0.21%, 0.45%). Areas of apparent higher prevalence remain in parts of the North West, and Yorkshire and The Humber. The highest prevalence in March was found among school-aged children 5 to 12 years at 0.41% (0.27%, 0.62%), compared with the lowest in those aged 65 to 74 and 75 and over at 0.09% (0.05%, 0.16%). The close approximation between prevalence of infections and deaths (suitably lagged) is diverging, suggesting that infections may have resulted in fewer hospitalisations and deaths since the start of widespread vaccination. ConclusionWe report a sharp decline in prevalence of infections between February and March 2021. We did not observe an increase in the prevalence of SARS-CoV-2 following the reopening of schools in England, although the decline of prevalence appears to have stopped. Future rounds of REACT-1 will be able to measure the rate of growth or decline from this current plateau and hence help assess the effectiveness of the vaccination roll-out on transmission of the virus as well as the potential size of any third wave during the ensuing months.

13.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21252856

RESUMO

BackgroundEngland will start to exit its third national lockdown in response to the COVID-19 pandemic on 8th March 2021, with safe effective vaccines being rolled out rapidly against a background of emerging transmissible and immunologically novel variants of SARS-CoV-2. A subsequent increase in community prevalence of infection could delay further relaxation of lockdown if vaccine uptake and efficacy are not sufficiently high to prevent increased pressure on healthcare services. MethodsThe PCR self-swab arm of the REal-time Assessment of Community Transmission Study (REACT-1) estimates community prevalence of SARS-CoV-2 infection in England based on random cross-sections of the population ages five and over. Here, we present results from the complete round 9 of REACT-1 comprising round 9a in which swabs were collected from 4th to 12th February 2021 and round 9b from 13th to 23rd February 2021. We also compare the results of REACT-1 round 9 to round 8, in which swabs were collected mainly from 6th January to 22nd January 2021. ResultsOut of 165,456 results for round 9 overall, 689 were positive. Overall weighted prevalence of infection in the community in England was 0.49% (0.44%, 0.55%), representing a fall of over two thirds from round 8. However the rate of decline of the epidemic has slowed from 15 (13, 17) days, estimated for the period from the end of round 8 to the start of round 9, to 31 days estimated using data from round 9 alone (lower confidence limit 17 days). When comparing round 9a to 9b there were apparent falls in four regions, no apparent change in one region and apparent rises in four regions, including London where there was a suggestion of sub-regional heterogeneity in growth and decline. Smoothed prevalence maps suggest large contiguous areas of growth and decline that do not align with administrative regions. Prevalence fell by 50% or more across all age groups in round 9 compared to round 8, with prevalence (round 9) ranging from 0.21% in those aged 65 and over to 0.71% in those aged 13 to 17 years. Round 9 prevalence was highest among Pakistani participants at 2.1% compared to white participants at 0.45% and Black participants at 0.83%. There were higher adjusted odds of infection for healthcare and care home workers, for those working in public transport and those working in education, school, nursery or childcare and lower adjusted odds for those not required to work outside the home. ConclusionsCommunity prevalence of swab-positivity has declined markedly between January and February 2021 during lockdown in England, but remains high; the rate of decline has slowed in the most recent period, with a suggestion of pockets of growth. Continued adherence to social distancing and public health measures is required so that infection rates fall to much lower levels. This will help to ensure that the benefits of the vaccination roll-out programme in England are fully realised.

14.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21251973

RESUMO

Background and MethodsEngland entered its third national lockdown of the COVID-19 pandemic on 6th January 2021 with the aim of reducing the daily number of deaths and pressure on healthcare services. The real-time assessment of community transmission study (REACT-1) obtains throat and nose swabs from randomly selected people in England in order to describe patterns of SARS-CoV-2 prevalence. Here, we report data from round 9a of REACT-1 for swabs collected between 4th and 13th February 2021. ResultsOut of 85,473 tested-swabs, 378 were positive. Overall weighted prevalence of infection in the community in England was 0.51%, a fall of more than two thirds since our last report (round 8) in January 2021 when 1.57% of people tested positive. We estimate a halving time of 14.6 days and a reproduction number R of 0.72, based on the difference in prevalence between the end of round 8 and the beginning of round 9. Although prevalence fell in all nine regions of England over the same period, there was greater uncertainty in the trend for North West, North East, and Yorkshire and The Humber. Prevalence fell substantially across all age groups with highest prevalence among 18- to 24-year olds at 0.89% (0.47%, 1.67%) and those aged 5 to12 years at 0.86% (0.60%, 1.24%). Large household size, living in a deprived neighbourhood, and Asian ethnicity were all associated with increased prevalence. Healthcare and care home workers were more likely to test positive compared to other workers. ConclusionsThere is a strong decline in prevalence of SARS-CoV-2 in England among the general population five to six weeks into lockdown, but prevalence remains high: at levels similar to those observed in late September 2020. Also, the number of COVID-19 cases in hospitals is higher than at the peak of the first wave in April 2020. The effects of easing of social distancing when we transition out of lockdown need to be closely monitored to avoid a resurgence in infections and renewed pressure on health services.

15.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250606

RESUMO

In early January 2021, England entered its third national lockdown of the COVID-19 pandemic to reduce numbers of deaths and pressure on healthcare services, while rapidly rolling out vaccination to healthcare workers and those most at risk of severe disease and death. REACT-1 is a survey of SARS-CoV-2 prevalence in the community in England, based on repeated cross-sectional samples of the population. Between 6th and 22nd January 2021, out of 167,642 results, 2,282 were positive giving a weighted national prevalence of infection of 1.57% (95% CI, 1.49%, 1.66%). The R number nationally over this period was estimated at 0.98 (0.92, 1.04). Prevalence remained high throughout, but with suggestion of a decline at the end of the study period. The average national trend masked regional heterogeneity, with robustly decreasing prevalence in one region (South West) and increasing prevalence in another (East Midlands). Overall prevalence at regional level was highest in London at 2.83% (2.53%, 3.16%). Although prevalence nationally was highest in the low-risk 18 to 24 year old group at 2.44% (1.96%, 3.03%), it was also high in those over 65 years who are most at risk, at 0.93% (0.82%, 1.05%). Large household size, living in a deprived neighbourhood, and Black and Asian ethnicity were all associated with higher levels of infections compared to smaller households, less deprived neighbourhoods and other ethnicities. Healthcare and care home workers, and other key workers, were more likely to test positive compared to other workers. If sustained lower prevalence is not achieved rapidly in England, pressure on healthcare services and numbers of COVID-19 deaths will remain unacceptably high.

16.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250158

RESUMO

BackgroundHigh prevalence of SARS-CoV-2 virus in many northern hemisphere populations is causing extreme pressure on healthcare services and leading to high numbers of fatalities. Even though safe and effective vaccines are being deployed in many populations, the majority of those most at-risk of severe COVID-19 will not be protected until late spring, even in countries already at a more advanced stage of vaccine deployment. MethodsThe REal-time Assessment of Community Transmission study-1 (REACT-1) obtains throat and nose swabs from between 120,000 and 180,000 people in the community in England at approximately monthly intervals. Round 8a of REACT-1 mainly covers a period from 6th January 2021 to 15th January 2021. Swabs are tested for SARS-CoV-2 virus and patterns of swab-positivity are described over time, space and with respect to individual characteristics. We compare swab-positivity prevalence from REACT-1 with mobility data based on the GPS locations of individuals using the Facebook mobile phone app. We also compare results from round 8a with those from round 7 in which swabs were collected from 13th November to 24th November (round 7a) and 25th November to 3rd December 2020 (round 7b). ResultsIn round 8a, we found 1,962 positives from 142,909 swabs giving a weighted prevalence of 1.58% (95% CI, 1.49%, 1.68%). Using a constant growth model, we found no strong evidence for either growth or decay averaged across the period; rather, based on data from a limited number of days, prevalence may have started to rise at the end of round 8a. Facebook mobility data showed a marked decrease in activity at the end of December 2020, followed by a rise at the start of the working year in January 2021. Between round 7b and round 8a, prevalence increased in all adult age groups, more than doubling to 0.94% (0.83%, 1.07%) in those aged 65 and over. Large household size, living in a deprived neighbourhood, and Black and Asian ethnicity were all associated with increased prevalence. Both healthcare and care home workers, and other key workers, had increased odds of swab-positivity compared to other workers. ConclusionDuring the initial 10 days of the third COVID-19 lockdown in England in January 2021, prevalence of SARS-CoV-2 was very high with no evidence of decline. Until prevalence in the community is reduced substantially, health services will remain under extreme pressure and the cumulative number of lives lost during this pandemic will continue to increase rapidly.

17.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248244

RESUMO

BackgroundEngland exited a four-week second national lockdown on 2nd December 2020 initiated in response to the COVID-19 pandemic. Prior results showed that prevalence dropped during the first half of lockdown, with greater reductions in higher-prevalence northern regions. MethodsREACT-1 is a series of community surveys of SARS-CoV-2 RT-PCR swab-positivity in England, designed to monitor the spread of the epidemic and thus increase situational awareness. Round 7 of REACT-1 commenced swab-collection on 13th November 2020. A prior interim report included data from 13th to 24th November 2020 for 105,122 participants. Here, we report data for the entire round with swab results obtained up to 3rd December 2020. ResultsBetween 13th November and 3rd December (round 7) there were 1,299 positive swabs out of 168,181 giving a weighted prevalence of 0.94% (95% CI 0.87%, 1.01%) or 94 per 10,000 people infected in the community in England. This compares with a prevalence of 1.30% (1.21%, 1.39%) from 16th October to 2nd November 2020 (round 6), a decline of 28%. Prevalence during the latter half of round 7 was 0.91% (95% CI, 0.81%, 1.03%) compared with 0.96% (0.87%, 1.05%) in the first half. The national R number in round 7 was estimated at 0.96 (0.88, 1.03) with a decline in prevalence observed during the first half of this period no longer apparent during the second half at the end of lockdown. During round 7 there was a marked fall in prevalence in West Midlands, a levelling off in some regions and a rise in London. R numbers at regional level ranged from 0.60 (0.41, 0.80) in West Midlands up to 1.27 (1.04, 1.54) in London, where prevalence was highest in the east and south-east of the city. Nationally, between 13th November and 3rd December, the highest prevalence was in school-aged children especially at ages 13-17 years at 2.04% (1.69%, 2.46%), or approximately 1 in 50. ConclusionBetween the previous round and round 7 (during lockdown), there was a fall in prevalence of SARS-CoV-2 swab-positivity nationally, but it did not fall uniformly over time or by geography. Continued vigilance is required to reduce rates of infection until effective immunity at the population level can be achieved through the vaccination programme.

18.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20223123

RESUMO

BackgroundREACT-1 measures prevalence of SARS-CoV-2 infection in representative samples of the population in England using PCR testing from self-administered nose and throat swabs. Here we report interim results for round 6 of observations for swabs collected from the 16th to 25th October 2020 inclusive. MethodsREACT-1 round 6 aims to collect data and swab results from 160,000 people aged 5 and above. Here we report results from the first 86,000 individuals. We estimate prevalence of PCR-confirmed SARS-CoV-2 infection, reproduction numbers (R) and temporal trends using exponential growth or decay models. Prevalence estimates are presented both unweighted and weighted to be representative of the population of England, accounting for response rate, region, deprivation and ethnicity. We compare these interim results with data from round 5, based on swabs collected from 18th September to 5th October 2020 inclusive. ResultsOverall prevalence of infection in the community in England was 1.28% or 128 people per 10,000, up from 60 per 10,000 in the previous round. Infections were doubling every 9.0 (6.1, 18) days with a national reproduction number (R) estimated at 1.56 (1.27, 1.88) compared to 1.16 (1.05, 1.27) in the previous round. Prevalence of infection was highest in Yorkshire and The Humber at 2.72% (2.12%, 3.50%), up from 0.84% (0.60%, 1.17%), and the North West at 2.27% (1.90%, 2.72%), up from 1.21% (1.01%, 1.46%), and lowest in South East at 0.55% (0.45%, 0.68%), up from 0.29% (0.23%, 0.37%). Clustering of cases was more prevalent in Lancashire, Manchester, Liverpool and West Yorkshire, West Midlands and East Midlands. Interim estimates of R were above 2 in the South East, East of England, London and South West, but with wide confidence intervals. Nationally, prevalence increased across all age groups with the greatest increase in those aged 55-64 at 1.20% (0.99%, 1.46%), up 3-fold from 0.37% (0.30%, 0.46%). In those aged over 65, prevalence was 0.81% (0.58%, 0.96%) up 2-fold from 0.35% (0.28%, 0.43%). Prevalence remained highest in 18 to 24-year olds at 2.25% (1.47%, 3.42%). ConclusionThe co-occurrence of high prevalence and rapid growth means that the second wave of the epidemic in England has now reached a critical stage. Whether via regional or national measures, it is now time-critical to control the virus and turn R below one if further hospital admissions and deaths from COVID-19 are to be avoided.

19.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20233932

RESUMO

BackgroundEngland is now in the midst of its second wave of the COVID-19 pandemic. Multiple regions of the country are at high infection prevalence and all areas experienced rapid recent growth of the epidemic during October 2020. MethodsREACT-1 is a series of community surveys of SARS-CoV-2 RT-PCR swab-positivity in England designed to monitor the spread of the epidemic and thus increase situational awareness. Round 6 of REACT-1 commenced swab-collection on 16th October. A prior interim report included data from 16th to 25th October for 85,971 participants. Here, we report data for the entire round on 160,175 participants with swab results obtained up to 2nd November 2020. ResultsOverall weighted prevalence of infection in the community in England was 1.3% or 130 people per 10,000 infected, up from 60 people per 10,000 in the round 5 report (18th September to 5th October 2020), doubling every 24 days on average since the prior round. The corresponding R number was estimated to be 1.2. Prevalence of infection was highest in North West (2.4%, up from 1.2%), followed by Yorkshire and The Humber (2.3% up from 0.84%), West Midlands (1.6% up from 0.60%), North East (1.5% up from 1.1%), East Midlands (1.3% up from 0.56%), London (0.97%, up from 0.54%), South West (0.80% up from 0.33%), South East (0.69% up from 0.29%), and East of England (0.69% up from 0.30%). Rapid growth in the South observed in the first half of round 6 was no longer apparent in the second half of round 6. We also observed a decline in prevalence in Yorkshire and The Humber during this period. Comparing the first and second halves of round 6, there was a suggestion of decline in weighted prevalence in participants aged 5 to 12 years and in those aged 25 to 44 years. While prevalence remained high, in the second half of round 6 there was suggestion of a slight fall then rise that was seen nationally and also separately in both the North and the South. ConclusionThe impact of the second national lockdown in England is not yet known. We provide here a detailed description of swab-positivity patterns at national, regional and local scales for the period immediately preceding lockdown, against which future trends in prevalence can be evaluated.

20.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20211227

RESUMO

BackgroundREACT-1 is quantifying prevalence of SARS-CoV-2 infection among random samples of the population in England based on PCR testing of self-administered nose and throat swabs. Here we report results from the fifth round of observations for swabs collected from the 18th September to 5th October 2020. This report updates and should be read alongside our round 5 interim report. MethodsRepresentative samples of the population aged 5 years and over in England with sample size ranging from 120,000 to 175,000 people at each round. Prevalence of PCR-confirmed SARS-CoV-2 infection, estimation of reproduction number (R) and time trends between and within rounds using exponential growth or decay models. Results175,000 volunteers tested across England between 18th September and 5th October. Findings show a national prevalence of 0.60% (95% confidence interval 0.55%, 0.71%) and doubling of the virus every 29 (17, 84) days in England corresponding to an estimated national R of 1.16 (1.05, 1.27). These results correspond to 1 in 170 people currently swab-positive for the virus and approximately 45,000 new infections each day. At regional level, the highest prevalence is in the North West, Yorkshire and The Humber and the North East with strongest regional growth in North West, Yorkshire and The Humber and West Midlands. ConclusionRapid growth has led to high prevalence of SARS-CoV-2 virus in England, with highest rates in the North of England. Prevalence has increased in all age groups, including those at highest risk. Improved compliance with existing policy and, as necessary, additional interventions are required to control the spread of SARS-CoV-2 in the community and limit the numbers of hospital admissions and deaths from COVID-19.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...