Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Contam Hydrol ; 62-63: 237-47, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12714293

RESUMO

Low-temperature calcite and opal record the past seepage of water into open fractures and lithophysal cavities in the unsaturated zone at Yucca Mountain, Nevada, site of a proposed high-level radioactive waste repository. Systematic measurements of calcite and opal coatings in the Exploratory Studies Facility (ESF) tunnel at the proposed repository horizon are used to estimate the volume of calcite at each site of calcite and/or opal deposition. By estimating the volume of water required to precipitate the measured volumes of calcite in the unsaturated zone, seepage rates of 0.005 to 5 liters/year (l/year) are calculated at the median and 95th percentile of the measured volumes, respectively. These seepage rates are at the low end of the range of seepage rates from recent performance assessment (PA) calculations, confirming the conservative nature of the performance assessment. However, the distribution of the calcite and opal coatings indicate that a much larger fraction of the potential waste packages would be contacted by this seepage than is calculated in the performance assessment.


Assuntos
Carbonato de Cálcio/química , Modelos Teóricos , Movimentos da Água , Previsões , Fenômenos Geológicos , Geologia , Nevada , Resíduos Radioativos , Eliminação de Resíduos
2.
J Contam Hydrol ; 62-63: 361-80, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12714300

RESUMO

Analyses of pore water extracted from cores of boreholes USW SD-6 in the central part and USW WT-24 in the northern part of Yucca Mountain, Nevada, show significant vertical and lateral variations in dissolved-ion concentrations. Analyses of samples of only a few milliliters of pore water extracted by uniaxial or triaxial compression and by ultracentrifugation methods from adjacent core samples are generally in agreement, within the analytical error of 10% to 15%. However, the values of silica for water obtained by ultracentrifugation are consistently lower than values for water obtained by compression. The larger concentrations probably are due to localized pressure solution of silicate minerals during compression. The shallower water from core in borehole USW SD-6 was extracted from nonwelded units collectively referred to as the Paintbrush Tuff nonwelded (PTn). The deeper water was from core in both boreholes USW SD-6 and USW WT-24 in the nonwelded units referred to as the Calico Hills nonwelded (CHn). Significant differences in mean dissolved-ion concentrations in pore water between the PTn and CHn are (1) decreases in Ca, Mg, SO(4), and NO(3) and (2) increases in HCO(3) and (Na+K)/(Ca+Mg) ratios. The decrease in NO(3) and the increase in HCO(3) could be the result of denitrification through the oxidation of organic matter. The decrease in Ca and associated increase in (Na+K)/(Ca+Mg) is the result of ion exchange with zeolites in the CHn in borehole USW WT-24. This effect is not nearly as pronounced in borehole USW SD-6, probably reflecting a smaller amount of zeolitization of the CHn in USW SD-6. Geochemical calculations using the PHREEQC code indicate that the pore water from both boreholes USW SD-6 and USW WT-24 is uniformly undersaturated in anhydrite, gypsum, and amorphous silica, but supersaturated in quartz and chalcedony. The saturation of calcite, aragonite, sepiolite, and dolomite is more variable from sample to sample.


Assuntos
Movimentos da Água , Água/química , Monitoramento Ambiental , Fenômenos Geológicos , Geologia , Minerais/análise , Nevada , Porosidade , Resíduos Radioativos , Eliminação de Resíduos , Zeolitas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...