Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36840173

RESUMO

Capsicum species grown for pepper production suffer severely from thrips damage, urging the identification of natural resistance. Resistance levels are commonly assessed on leaves. However, Capsicum plants are flower-bearing during most of the production season, and thrips also feed on pollen and flower tissues. In order to obtain a comprehensive estimate of elements contributing to thrips resistance, flower tissues should be considered as well. Therefore, we assessed resistance to Frankliniella occidentalis in flowers, leaves, and whole plants of ten Capsicum accessions. Using choice assays, we found that thrips prefer flowers of certain accessions over others. The preference of adult thrips for flowers was positively correlated to trehalose and fructose concentration in anthers as well as to pollen quantity. Resistance measured on leaf discs and thrips population development on whole plants was significantly and positively correlated. Leaf-based resistance thus translates to reduced thrips population development. Results of the flower assays were not significantly correlated with resistance in leaves or on whole plants. This suggests that both leaves and flowers represent a different part of the resistance spectrum and should both be considered for understanding whole plant resistance and the identification of resistant Capsicum varieties.

2.
J Chem Ecol ; 46(11-12): 1082-1089, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33089351

RESUMO

The cuticular wax layer can be important for plant resistance to insects. Thrips (Frankliniella occidentalis) damage was assessed on 11 pepper accessions of Capsicum annuum and C. chinense in leaf disc and whole plant assays. Thrips damage differed among the accessions. We analyzed the composition of leaf cuticular waxes of these accessions by GC-MS. The leaf wax composition was different between the two Capsicum species. In C. annuum, 1-octacosanol (C28 alcohol) was the most abundant component, whereas in C. chinense 1-triacotanol (C30 alcohol) was the prominent. Thrips susceptible accessions had significantly higher concentrations of C25-C29 n-alkanes and iso-alkanes compared to relatively resistant pepper accessions. The triterpenoids α- and ß-amyrin tended to be more abundant in resistant accessions. Our study suggests a role for very long chain wax alkanes in thrips susceptibility of pepper.


Assuntos
Alcanos/química , Capsicum/fisiologia , Folhas de Planta/química , Tisanópteros/química , Tisanópteros/metabolismo , Ceras/química , Animais , Álcoois Graxos/química , Cromatografia Gasosa-Espectrometria de Massas , Extratos Vegetais/análise , Extratos Vegetais/metabolismo , Especificidade da Espécie , Relação Estrutura-Atividade
3.
Front Plant Sci ; 11: 803, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32625224

RESUMO

Induced plant responses to insect herbivores are well studied, but we know very little about responses to gastropod feeding. We aim to identify the temporal dynamics of signaling- and defense-related plant responses after slug feeding in relation to induced resistance. We exposed Solanum dulcamara plants to feeding by the gray field slug (GFS; Deroceras reticulatum) for different periods and tested disks of local and systemic leaves in preference assays. Induced responses were analyzed using metabolomics and transcriptomics. GFS feeding induced local and systemic responses. Slug feeding for 72 h more strongly affected the plant metabolome than 24 h feeding. It increased the levels of a glycoalkaloid (solasonine), phenolamides, anthocyanins, and trypsin protease inhibitors as well as polyphenol oxidase activity. Phytohormone and transcriptome analyses revealed that jasmonic acid, abscisic acid and salicylic acid signaling were activated. GFS feeding upregulated more genes than that it downregulated. The response directly after feeding was more than five times higher than after an additional 24 h without feeding. Our research showed that GFS, like most chewing insects, triggers anti-herbivore defenses by activating defense signaling pathways, resulting in increased resistance to further slug feeding. Slug herbivory may therefore impact other herbivores in the community.

4.
J Chem Ecol ; 45(5-6): 490-501, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31175497

RESUMO

The development of pesticide resistance in insects and recent bans on pesticides call for the identification of natural sources of resistance in crops. Here, we used natural variation in pepper (Capsicum spp.) resistance combined with an untargeted metabolomics approach to detect secondary metabolites related to thrips (Frankliniella occidentalis) resistance. Using leaf disc choice assays, we tested 11 Capsicum accessions of C. annuum and C. chinense in both vegetative and flowering stages for thrips resistance. Metabolites in the leaves of these 11 accessions were analyzed using LC-MS based untargeted metabolomics. The choice assays showed significant differences among the accessions in thrips feeding damage. The level of resistance depended on plant developmental stage. Metabolomics analyses showed differences in metabolomes among the Capsicum species and plant developmental stages. Moreover, metabolomic profiles of resistant and susceptible accessions differed. Monomer and dimer acyclic diterpene glycosides (capsianosides) were pinpointed as metabolites that were related to thrips resistance. Sucrose and malonylated flavone glycosides were related to susceptibility. To our knowledge, this is the first time that dimer capsianosides of pepper have been linked to insect resistance. Our results show the potential of untargeted metabolomics as a tool for discovering metabolites that are important in plant - insect interactions.


Assuntos
Capsicum/química , Diterpenos/química , Glicosídeos/química , Metabolômica , Animais , Capsicum/metabolismo , Capsicum/parasitologia , Cromatografia Líquida de Alta Pressão , Análise por Conglomerados , Dimerização , Análise Discriminante , Glicosídeos/farmacologia , Interações Hospedeiro-Parasita , Metaboloma , Folhas de Planta/química , Folhas de Planta/metabolismo , Folhas de Planta/parasitologia , Análise de Componente Principal , Espectrometria de Massas em Tandem , Tisanópteros/efeitos dos fármacos , Tisanópteros/fisiologia
5.
Front Plant Sci ; 10: 510, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31105720

RESUMO

Capsicum is a genus containing important crop species, many of which severely suffer from thrips infestation. Thrips feeding damages leaves and fruits, and often results in virus infections. Only a few insecticides are still effective against thrips, underlining the importance of finding natural resistance in crops. Capsicum is a perennial plant which is usually cultivated for several months, during which time the fruits are harvested. From the young vegetative stage to the mature fruit bearing stage, the plants are at risk to thrips infestation. Constitutive resistance to thrips over the entire ontogenetic development is therefore a key trait for a more sustainable and successful cultivation of the hot and sweet pepper. In addition to ontogeny, leaf position can affect the level of thrips resistance. Pest resistance levels are known to differ between young and old leaves. To our knowledge, no studies have explicitly considered ontogeny and leaf position when screening for constitutive resistance to thrips in Capsicum. In this study we analyze whether ontogeny and leaf position affect leaf-based resistance to Frankliniella occidentalis and Thrips tabaci, in 40 Capsicum accessions, comprising five different species. Our results show that resistance to both thrips species in Capsicum varies with ontogenetic stage. This variation in resistance among ontogenetic stages was not consistent among the accessions. However, accessions with constitutive resistance in both the flowering and fruit ripening stage could be identified. In addition, we found that thrips resistance is overall similar at different leaf positions within the ontogenetic stage. This implies that resistance mechanisms, such as defense compounds, are constitutively present at sufficient levels on all leaf positions. Finally, we found that resistance to F. occidentalis and resistance to T. tabaci were not correlated. This indicates that leaf-based resistance in Capsicum is thrips species-specific. Because of the variation in resistance over ontogeny, identifying Capsicum accessions with resistance over their entire lifespan is challenging. For resistance screening, accounting for leaf position may be less of a concern. To identify the defense mechanisms responsible for thrips resistance, it is important to further analyze and compare resistant and susceptible accessions.

6.
J Chem Ecol ; 45(2): 146-161, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29961916

RESUMO

Solanum dulcamara (Bittersweet nightshade) shows significant intraspecific variation in glycoalkaloid (GA) composition and concentration. We previously showed that constitutive differences in overall GA levels are correlated with feeding preference of the grey field slug (GFS; Deroceras reticulatum). One particularly preferred accession, ZD11, contained low GA levels, but high levels of previously unknown structurally related uronic acid conjugated compounds (UACs). Here we test whether different slug species as well as insect herbivores show similar feeding preferences among six S. dulcamara accessions with different GA chemotypes. In addition, we investigate whether slug feeding can lead to induced changes in the chemical composition and affect later arriving herbivores. A leaf disc assay using greenhouse-grown plants showed that three slug species similarly preferred accessions with low GA levels. Untargeted metabolomic analyses showed that previous slug feeding consistently increased the levels of N-caffeoyl-putrescine and a structurally related metabolite, but not the levels of GAs and UACs. Slug-induced responses only affected slug preference in one accession. A common garden experiment using the same six accessions revealed that ZD11 received the highest natural gastropod feeding damage, but suffered the lowest damage by specialist flea beetles. The latter preferred to feed on accessions with high GA levels. Our study indicates that different selection pressures imposed by generalist gastropods and specialist insects may explain part of the observed chemical diversity in S. dulcamara.


Assuntos
Gastrópodes/fisiologia , Insetos/fisiologia , Solanum/química , Alcaloides/química , Alcaloides/metabolismo , Alcaloides/farmacologia , Animais , Cromatografia Líquida de Alta Pressão , Gastrópodes/efeitos dos fármacos , Herbivoria/efeitos dos fármacos , Insetos/efeitos dos fármacos , Metaboloma , Folhas de Planta/química , Folhas de Planta/metabolismo , Análise de Componente Principal , Solanum/metabolismo , Espectrometria de Massas em Tandem
7.
Oecologia ; 187(2): 495-506, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29383505

RESUMO

In natural environments, plants have to deal with a wide range of different herbivores whose communities vary in time and space. It is believed that the chemical diversity within plant species has mainly arisen from selection pressures exerted by herbivores. So far, the effects of chemical diversity on plant resistance have mostly been assessed for arthropod herbivores. However, also gastropods, such as slugs, can cause extensive damage to plants. Here we investigate to what extent individual Solanum dulcamara plants differ in their resistance to slug herbivory and whether this variation can be explained by differences in secondary metabolites. We performed a series of preference assays using the grey field slug (Deroceras reticulatum) and S. dulcamara accessions from eight geographically distinct populations from the Netherlands. Significant and consistent variation in slug preference was found for individual accessions within and among populations. Metabolomic analyses showed that variation in steroidal glycoalkaloids (GAs) correlated with slug preference; accessions with high GA levels were consistently less damaged by slugs. One, strongly preferred, accession with particularly low GA levels contained high levels of structurally related steroidal compounds. These were conjugated with uronic acid instead of the glycoside moieties common for Solanum GAs. Our results illustrate how intraspecific variation in steroidal glycoside profiles affects resistance to slug feeding. This suggests that also slugs should be considered as important drivers in the co-evolution between plants and herbivores.


Assuntos
Gastrópodes , Solanum , Animais , Glicosídeos , Herbivoria , Países Baixos
8.
Bio Protoc ; 8(8): e2806, 2018 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-34286023

RESUMO

Quantification of insect damage is an essential measurement for identifying resistance in plants. In screening for host plant resistance against thrips, the total damaged leaf area is used as a criterion to determine resistance levels. Here we present an objective novel method for analyzing thrips damage on leaf disc using the freely available software programs Ilastik and ImageJ. The protocol was developed in order to screen over 40 Capsicum lines for resistance against Frankliniella occidentalis (Western Flower Thrips) and Thrips tabaci (Onion thrips).

9.
PLoS One ; 12(12): e0189788, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29244865

RESUMO

In Arabidopsis, the F-box HAWAIIAN SKIRT (HWS) protein is important for organ growth. Loss of function of HWS exhibits pleiotropic phenotypes including sepal fusion. To dissect the HWS role, we EMS-mutagenized hws-1 seeds and screened for mutations that suppress hws-1 associated phenotypes. We identified shs-2 and shs-3 (suppressor of hws-2 and 3) mutants in which the sepal fusion phenotype of hws-1 was suppressed. shs-2 and shs-3 (renamed hst-23/hws-1 and hst-24/hws-1) carry transition mutations that result in premature terminations in the plant homolog of Exportin-5 HASTY (HST), known to be important in miRNA biogenesis, function and transport. Genetic crosses between hws-1 and mutant lines for genes in the miRNA pathway also suppress the phenotypes associated with HWS loss of function, corroborating epistatic relations between the miRNA pathway genes and HWS. In agreement with these data, accumulation of miRNA is modified in HWS loss or gain of function mutants. Our data propose HWS as a new player in the miRNA pathway, important for plant growth.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Proteínas F-Box/genética , MicroRNAs/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/biossíntese , Proteínas F-Box/biossíntese , Regulação da Expressão Gênica de Plantas , Mutação , Fenótipo , Plantas Geneticamente Modificadas/genética , Sementes/crescimento & desenvolvimento , Transdução de Sinais
10.
PLoS One ; 12(9): e0185106, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28934292

RESUMO

The Arabidopsis thaliana F-box gene HAWAIIAN SKIRT (HWS) affects organ growth and the timing of floral organ abscission. The loss-of-function hws-1 mutant exhibits fused sepals and increased organ size. To understand the molecular mechanisms of HWS during plant development, we mutagenized hws-1 seeds with ethylmethylsulphonate (EMS) and screened for mutations suppressing hws-1 associated phenotypes. We isolated the shs1/hws-1 (suppressor of hws-1) mutant in which hws-1 sepal fusion phenotype was suppressed. The shs1/hws-1 mutant carries a G→A nucleotide substitution in the MIR164 binding site of CUP-SHAPED COTYLEDON 1 (CUC1) mRNA. CUC1 and CUP-SHAPED COTYLEDON 2 (CUC2) transcript levels were altered in shs1, renamed cuc1-1D, and in hws-1 mutant. Genetic interaction analyses using single, double and triple mutants of cuc1-1D, cuc2-1D (a CUC2 mutant similar to cuc1-1D), and hws-1, demonstrate that HWS, CUC1 and CUC2 act together to control floral organ number. Loss of function of HWS is associated with larger petal size due to alterations in cell proliferation and mitotic growth, a role shared with the CUC1 gene.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas F-Box/metabolismo , Flores/crescimento & desenvolvimento , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Sítios de Ligação , Proliferação de Células/fisiologia , Tamanho Celular , Proteínas F-Box/genética , Retroalimentação Fisiológica/fisiologia , Flores/anatomia & histologia , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , MicroRNAs/metabolismo , Mutagênicos , Mutação , Tamanho do Órgão , Fenótipo , Plantas Geneticamente Modificadas , Ligação Proteica , RNA Mensageiro/metabolismo , Sementes/efeitos dos fármacos , Sementes/genética , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
11.
Front Plant Sci ; 6: 999, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26635827

RESUMO

High temperature has become a global concern because it seriously affects the growth and reproduction of plants. Exposure of plant cells to high temperatures result in cellular damage and can even lead to cell death. Part of the damage can be ascribed to the action of reactive oxygen species (ROS), which accumulate during abiotic stresses such as heat stress. ROS are toxic and can modify other biomacromolecules including membrane lipids, DNA, and proteins. In order to protect the cells, ROS scavenging is essential. In contrast with their inherent harms, ROS also function as signaling molecules, inducing stress tolerance mechanisms. This review examines the evidence for crosstalk between the classical heat stress response, which consists of heat shock factors (HSFs) and heat shock proteins (HSPs), with the ROS network at multiple levels in the heat response process. Heat stimulates HSF activity directly, but also indirectly via ROS. HSFs in turn stimulate the expression of HSP chaperones and also affect ROS scavenger gene expression. In the short term, HSFs repress expression of superoxide dismutase scavenger genes via induction of miRNA398, while they also activate scavenger gene expression and stabilize scavenger protein activity via HSP induction. We propose that these contrasting effects allow for the boosting of the heat stress response at the very onset of the stress, while preventing subsequent oxidative damage. The described model on HSFs, HSPs, ROS, and ROS scavenger interactions seems applicable to responses to stresses other than heat and may explain the phenomenon of crossacclimation.

12.
BMC Genomics ; 16: 89, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25879408

RESUMO

BACKGROUND: Crossing over assures the correct segregation of the homologous chromosomes to both poles of the dividing meiocyte. This exchange of DNA creates new allelic combinations thus increasing the genetic variation present in offspring. Crossovers are not uniformly distributed along chromosomes; rather there are preferred locations where they may take place. The positioning of crossovers is known to be influenced by both exogenous and endogenous factors as well as structural features inherent to the chromosome itself. We have introduced large structural changes into Arabidopsis chromosomes and report their effects on crossover positioning. RESULTS: The introduction of large deletions and putative inversions silenced recombination over the length of the structural change. In the majority of cases analyzed, the total recombination frequency over the chromosomes was unchanged. The loss of crossovers at the sites of structural change was compensated for by increases in recombination frequencies elsewhere on the chromosomes, mostly in single intervals of one to three megabases in size. Interestingly, two independent cases of induced structural changes in the same chromosomal interval were found on both chromosomes 1 and 2. In both cases, compensatory increases in recombination frequencies were of similar strength and took place in the same chromosome region. In contrast, deletions in chromosome arms carrying the nucleolar organizing region did not change recombination frequencies in the remainder of those chromosomes. CONCLUSIONS: When taken together, these observations show that changes in the physical structure of the chromosome can have large effects on the positioning of COs within that chromosome. Moreover, different reactions to induced structural changes are observed between and within chromosomes. However, the similarity in reaction observed when looking at chromosomes carrying similar changes suggests a direct causal relation between induced change and observed reaction.


Assuntos
Arabidopsis/genética , Cromossomos de Plantas/química , Troca Genética/genética , Deleção Cromossômica , Inversão Cromossômica/efeitos da radiação , Cromossomos de Plantas/metabolismo , Cromossomos de Plantas/efeitos da radiação , Raios gama , Frequência do Gene , Genótipo , Perda de Heterozigosidade/efeitos da radiação , Meiose , Recombinação Genética
13.
AoB Plants ; 62014 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-24887003

RESUMO

Clonal plants, which reproduce by means of stolons and rhizomes, are common in frequently flooded habitats. Resilience to disturbance is an important trait enabling plants to survive in such highly disturbed habitats. Resource storage is thought to enable clonal plants to resume growth after clonal fragmentation caused by disturbance. Here we investigated if submergence prior to disturbance reduces survival and regrowth of clonal fragments and whether or not genotypes originating from highly disturbed riverine habitats are more resistant to mechanical disturbance than genotypes from less disturbed coastal dune slack habitats. We further tested if variation in survival and regrowth was affected by internode size. Clones from contrasting habitats of two closely related Trifolium species were first genotypically characterized by amplification fragment length polymorphism and then subjected to soil flooding and subsequent clonal fragmentation. These species differ with respect to their abundance in riverine and dune slack habitats, with Trifolium repens mainly occurring in riverine grasslands and Trifolium fragiferum in coastal dune slacks. Soil flooding decreased survival and regrowth by up to 80 %. Plants originating from riverine grasslands were less negatively affected by fragmentation than plants from dune slack habitats. Surprisingly, ramets did not always benefit from being attached to a larger internode, as internode size was often negatively correlated with survival after fragmentation. Regrowth, on the other hand, was generally positively correlated with internode size. These unexpected results indicate that there may be contrasting selection pressures on internode size in stoloniferous species growing in severely disturbed habitats.

14.
Plant Physiol ; 144(3): 1370-82, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17496113

RESUMO

A fast neutron-mutagenized population of Arabidopsis (Arabidopsis thaliana) Columbia-0 wild-type plants was screened for floral phenotypes and a novel mutant, termed hawaiian skirt (hws), was identified that failed to shed its reproductive organs. The mutation is the consequence of a 28 bp deletion that introduces a premature amber termination codon into the open reading frame of a putative F-box protein (At3g61590). The most striking anatomical characteristic of hws plants is seen in flowers where individual sepals are fused along the lower part of their margins. Crossing of the abscission marker, Pro(PGAZAT):beta-glucuronidase, into the mutant reveals that while floral organs are retained it is not the consequence of a failure of abscission zone cells to differentiate. Anatomical analysis indicates that the fusion of sepal margins precludes shedding even though abscission, albeit delayed, does occur. Spatial and temporal characterization, using Pro(HWS):beta-glucuronidase or Pro(HWS):green fluorescent protein fusions, has identified HWS expression to be restricted to the stele and lateral root cap, cotyledonary margins, tip of the stigma, pollen, abscission zones, and developing seeds. Comparative phenotypic analyses performed on the hws mutant, Columbia-0 wild type, and Pro(35S):HWS ectopically expressing lines has revealed that loss of HWS results in greater growth of both aerial and below-ground organs while overexpressing the gene brings about a converse effect. These observations are consistent with HWS playing an important role in regulating plant growth and development.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas F-Box/genética , Caulimovirus , Mapeamento Cromossômico , Flores/crescimento & desenvolvimento , Expressão Gênica , Genes Reporter , Marcadores Genéticos , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Fenótipo , Raízes de Plantas/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Plântula/crescimento & desenvolvimento , Sementes/crescimento & desenvolvimento
15.
Plant Mol Biol ; 62(3): 409-25, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16915515

RESUMO

Based upon the phenotype of young, dark-grown seedlings, a cytokinin-resistant mutant, cnr1, has been isolated, which displays altered cytokinin- and auxin-induced responses. The mutant seedlings possess short hypocotyls and open apical hooks (in dark), and display agravitropism, hyponastic cotyledons, reduced shoot growth, compact rosettes and short roots with increased adventitious branching and reduced number of root hairs. A number of these features invariably depend upon auxin/cytokinin ratio but the cnr1 mutant retains normal sensitivity towards auxin as well as auxin polar transport inhibitor, TIBA, although upregulation of primary auxin-responsive Aux/IAA genes is reduced. The mutant shows resistance towards cytokinin in hypocotyl/root growth inhibition assays, displays reduced regeneration in tissue cultures (cytokinin response) and decreased sensitivity to cytokinin for anthocyanin accumulation. It is thus conceivable that due to reduced sensitivity to cytokinin, the cnr1 mutant also shows altered auxin response. Surprisingly, the mutant retains normal sensitivity to cytokinin for induction of primary response genes, the type-A Arabidopsis response regulators, although the basal level of their expression was considerably reduced as compared to the wild-type. The zeatin and zeatin riboside levels, as estimated by HPLC, and the cytokinin oxidase activity were comparable in the cnr1 mutant and the wild-type. The hypersensitivity to red light (in hypocotyl growth inhibition assay), partial photomorphogenesis in dark, and hypersensitivity to sugars, are some other features displayed by the cnr1 mutant. The lesion in the cnr1 mutant has been mapped to the top of chromosome 1 where no other previously known cytokinin-resistant mutant has been mapped, indicating that the cnr1 mutant defines a novel locus involved in hormone, light and sugar signalling.


Assuntos
Arabidopsis/metabolismo , Metabolismo dos Carboidratos , Citocininas/fisiologia , Genes de Plantas , Ácidos Indolacéticos/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Sequência de Bases , Primers do DNA , Regulação da Expressão Gênica de Plantas , Gravitropismo , Oxirredutases/metabolismo
16.
Chromosome Res ; 14(8): 919-32, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-17203374

RESUMO

We analyzed changes in gene expression during male meiosis in Petunia by combining the meiotic staging of pollen mother cells from a single anther with cDNA-AFLP transcript profiling of mRNA from the synchronously developing sister anthers. The transcript profiling experiments focused on the identification of genes with a modulated expression profile during meiosis, while premeiotic archesporial cells and postmeiotic microspores served as a reference. About 8000 transcript tags, estimated at 30% of the total transcriptome, were generated, of which around 6% exhibited a modulated gene expression pattern at meiosis. Cluster analysis revealed a transcriptional cascade that coincides with the initiation and progression through all stages of the two meiotic divisions. Fragments that exhibited high expression specifically during meiosis I were characterized further by sequencing; 90 out of the 293 sequenced fragments showed homology with known genes, belonging to a wide range of gene classes, including previously characterized meiotic genes. In-situ hybridization experiments were performed to determine the spatial expression pattern for five selected transcript tags. Its concurrence with cDNA-AFLP transcript profiles indicates that this is an excellent approach to study genes involved in specialized processes such as meiosis. Our data set provides the potential to unravel unique meiotic genes that are as yet elusive to reverse genetics approaches.


Assuntos
Regulação da Expressão Gênica de Plantas/genética , Genoma de Planta , Meiose/genética , Petunia/genética , DNA Complementar/genética , DNA de Plantas/genética , Técnicas de Amplificação de Ácido Nucleico
17.
Plant Mol Biol ; 56(2): 185-201, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15604737

RESUMO

We have isolated an Arabidopsis mutant impaired in light- and brassinosteroid (BR) induced responses, as well as in sugar signalling. The bls1 (brassinosteroid, light and sugar1) mutant displays short hypocotyl, expanded cotyledons, and de-repression of light-regulated genes in young seedlings, and leaf differentiation and silique formation on prolonged growth in dark. In light, the bls1 mutant is dwarf and develops a short root, compact rosette, with reduced trichome number, and exhibits delayed bolting. The activity of the BR inducible TCH4 and auxin inducible SAUR promoters, fused with GUS gene, is also altered in seedlings harbouring bls1 mutant background. In addition, the bls1 mutant is hypersensitive to metabolizable sugars. The short hypocotyl phenotype in dark, short root phenotype in light and sugar hypersensitivity could be rescued with BR application. Moreover, the bls1 mutant also showed higher expression of a BR biosynthetic pathway gene CPD, which is known to be feedback-regulated by BR. Using a genome-wide AFLP mapping strategy, the bls1 mutant has been mapped to a 1.4 Mb region of chromosome 5. Since no other mutant with essentially a similar phenotype has been assigned to this region, we suggest that the bls1 mutant defines a novel locus involved in regulating endogenous BR levels, with possible ramifications in integrating light, hormone and sugar signalling.


Assuntos
Arabidopsis/genética , Carboidratos/farmacologia , Colestanóis/farmacologia , Mutação , Reguladores de Crescimento de Plantas/farmacologia , Esteroides Heterocíclicos/farmacologia , Ácido Abscísico/farmacologia , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Brassinosteroides , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Cruzamentos Genéticos , Escuridão , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genótipo , Giberelinas/farmacologia , Glucose/farmacologia , Glucuronidase/genética , Glucuronidase/metabolismo , Hipocótilo/efeitos dos fármacos , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/efeitos da radiação , Ácidos Indolacéticos/farmacologia , Luz , Morfogênese/efeitos dos fármacos , Morfogênese/efeitos da radiação , Fenótipo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/efeitos da radiação , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Sacarose/farmacologia
18.
J Exp Bot ; 55(402): 1529-39, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15208345

RESUMO

Leaf development in Arabidopsis thaliana is considered to be a two-step process. In the first step, a leaf primordium is formed that involves a switch from indeterminate to leaf developmental fate in the shoot apical meristem cells. The second step, known as leaf morphogenesis, consists of post-initiation developmental events such as patterned cell proliferation, cell expansion, and cell differentiation. The results are presented of the molecular and genetic analyses of the rotunda2 (ron2) mutants of Arabidopsis, which were isolated based on their wide and serrated vegetative leaf lamina. The RON2 gene was positionally cloned and was identical to LEUNIG (LUG); it encodes a transcriptional co-repressor that has been described to affect flower development. Morphological and histological analyses of expanded leaves indicated that RON2 (LUG) acts at later stages of leaf development by restricting cell expansion during leaf growth. Real-time reverse-transcription polymerase chain reaction was used to quantify the expression of KNOX, WUSCHEL, YABBY3, LEAFY, ASYMMETRIC LEAVES, and GIBBERELLIN OXIDASE genes in expanding and fully expanded rosette leaf laminas of the wild type and ron2 and lug mutants. SHOOTMERISTEMLESS was expressed in wild-type leaves and down-regulated in the mutants. The results indicate that RON2 (LUG) has a function in later stages of leaf development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Folhas de Planta/crescimento & desenvolvimento , Fatores de Transcrição/genética , Sequência de Aminoácidos , Arabidopsis/citologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Tamanho Celular , Cromossomos de Plantas/genética , Sequência Conservada , Primers do DNA , Microscopia de Interferência/métodos , Dados de Sequência Molecular , Morfogênese , Oryza/genética , Fenótipo , Folhas de Planta/genética , Mapeamento por Restrição , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fatores de Transcrição/química
19.
Trends Plant Sci ; 8(10): 484-91, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-14557045

RESUMO

Whereas reverse genetics strategies seek to identify and select mutations in a known sequence, forward genetics requires the cloning of sequences underlying a particular mutant phenotype. Map-based cloning is tedious, hampering the quick identification of candidate genes. With the unprecedented progress in the sequencing of whole genomes, and perhaps even more with the development of saturating marker technologies, map-based cloning can now be performed so efficiently that, at least for some plant model systems, it has become feasible to identify some candidate genes within a few months. This, in turn, will boost the use of forward genetics approaches, as applied (for example) to isolating genes involved in natural variation and genes causing phenotypic mutations as derived from (second-site) mutagenesis screens.


Assuntos
Mapeamento Cromossômico , Clonagem Molecular/métodos , Plantas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Marcadores Genéticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...