Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 581(Pt B): 566-575, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32818676

RESUMO

HYPOTHESIS: Conjugated polymer nanoparticles (CNPs) have attracted considerable attention within bioimaging due to their excellent optical properties and biocompatibility. However, unspecific adsorption of proteins hampers their effective use as advanced bioimaging probes. Controlled methodologies made possible tailor-made functional poly(p-phenylene vinylene), enabling one-pot synthesis of CNPs containing functional surface groups. Hence, it should be feasible to PEGylate these CNPs to tune the uptake by cell lines representative for the brain without imparting their optical properties. EXPERIMENTS: CNPs consisting of the statistical copolymer 2-(5'-methoxycarbonylpentyloxy)-5-methoxy-1,4-phenylenevinylene and poly(2-methoxy-5-(3',7'-dimethoxyoctyloxy)-1,4-phenylenevinylene) were fabricated by miniemulsion solvent evaporation technique. Surface carboxylic acid groups were used to covalently attach amine-terminated polyethylene glycol (PEG) of different molecular weights. We investigated the effect of grafting CNPs with PEG chains on their intrinsic optical properties, protein adsorption behavior and uptake by representative brain cell lines. FINDINGS: PEGylation did not affect the optical properties and biocompatibility of our CNPs. Moreover, a significant decrease in protein corona formation and unspecific uptake in central nervous system cell lines, depending on PEG chain length, was observed. This is the first report indicating that PEGylation does not affect the CNPs role as excellent bioimaging tools and can be adapted to tune biological interactions with brain cells.


Assuntos
Nanopartículas , Polivinil , Polietilenoglicóis , Polímeros
2.
J Nanobiotechnology ; 16(1): 82, 2018 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-30368242

RESUMO

BACKGROUND: The continuously growing human exposure to combustion-derived particles (CDPs) drives in depth investigation of the involved complex toxicological mechanisms of those particles. The current study evaluated the hypothesis that CDPs could affect cell-induced remodeling of the extracellular matrix due to their underlying toxicological mechanisms. The effects of two ultrafine and one fine form of CDPs on human lung fibroblasts (MRC-5 cell line) were investigated, both in 2D cell culture and in 3D collagen type I hydrogels. A multi-parametric analysis was employed. RESULTS: In vitro dynamic 3D analysis of collagen matrices showed that matrix displacement fields induced by human lung fibroblasts are disturbed when exposed to carbonaceous particles, resulting in inhibition of matrix remodeling. In depth analysis using general toxicological assays revealed that a plausible explanation comprises a cascade of numerous detrimental effects evoked by the carbon particles, including oxidative stress, mitochondrial damage and energy storage depletion. Also, ultrafine particles revealed stronger toxicological and inhibitory effects compared to their larger counterparts. The inhibitory effects can be almost fully restored when treating the impaired cells with antioxidants like vitamin C. CONCLUSIONS: The unraveled in vitro pathway, by which ultrafine particles alter the fibroblasts' vital role of matrix remodeling, extends our knowledge about the contribution of these biologically active particles in impaired lung tissue repair mechanisms, and development and exacerbation of chronic lung diseases. The new insights may even pave the way to precautionary actions. The results provide justification for toxicological assessments to include mechanism-linked assays besides the traditional in vitro toxicological screening assays.


Assuntos
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Pulmão/citologia , Material Particulado/toxicidade , Trifosfato de Adenosina/metabolismo , Antioxidantes/metabolismo , Colágeno Tipo I/metabolismo , Matriz Extracelular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
3.
Colloids Surf B Biointerfaces ; 169: 494-501, 2018 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-29857249

RESUMO

Conjugated polymer nanoparticle systems have gained significant momentum in the bioimaging field on account of their biocompatibility and outstanding spectroscopic properties. Recently, new control procedures have spawned custom-built functional poly(p-phenylene vinylene) (PPV). These facilitate the one-pot synthesis of semiconducting polymer NPs with incorporated surface functional groups, an essential feature for advanced biomedical applications. In this work, nanoparticles (NPs) of different sizes are synthesized consisting of the statistical copolymer CPM-co-MDMO-PPV with monomer units 2-(5'-methoxycarbonylpentyloxy)-5-methoxy-1,4-phenylenevinylene (CPM-PPV) and poly(2-methoxy-5-(3',7'-dimethoxyoctyloxy)-1,4-phenylenevinylene) (MDMO-PPV). To monitor potential implications of switching from a commonly used homopolymer to copolymer system, MDMO-PPV NPs were prepared as a control. The versatile combination of the miniemulsion and solvent evaporation method allowed for an easy adaptation of the NP size. Decreasing the diameter of functional PPV-based NPs up to 20 nm did not significantly affect their optical properties nor the biocompatibility of the bioimaging probe, as cell viability never dropped below 90%. The quantum yield and molar extinction coefficient remained stable at values of 1-2% and 106 M-1 cm-1 respectively, indicating an excellent fluorescence brightness. However, a threshold was observed to which the size could be lowered without causing irreversible changes to the system. Cell uptake varied drastically depended on size and material choice, as switching from homo- to copolymer system and lowering the size significantly increased NP uptake. These results clearly demonstrate that adjusting the size of functional PPV-based NPs can be achieved easily to a lower limit of 20 nm without adversely affecting their performance in bioimaging applications.


Assuntos
Materiais Biocompatíveis/química , Corantes Fluorescentes/química , Nanopartículas/química , Polivinil/química , Materiais Biocompatíveis/síntese química , Materiais Biocompatíveis/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Fluorescência , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/farmacologia , Humanos , Hidrodinâmica , Cinética , Tamanho da Partícula , Polivinil/síntese química , Polivinil/farmacologia , Propriedades de Superfície
4.
RSC Adv ; 8(64): 36869-36878, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-35558930

RESUMO

The development of functional nanocarriers with stimuli-responsive properties has advanced tremendously to serve biomedical applications such as drug delivery and regenerative medicine. However, the development of biodegradable nanocarriers that can be loaded with hydrophilic compounds and ensure its controlled release in response to changes in the surrounding environment still remains very challenging. Herein, we achieved such demands via the preparation of aqueous core nanocapsules using a base-catalyzed interfacial reaction employing a diisocyanate monomer and functional monomers/polymers containing thiol and hydroxyl functionalities at the droplet interface. pH-responsive poly(thiourethane-urethane) nanocarriers with ester linkages were synthesized by incorporating polycaprolactone diol, which is susceptible to hydrolytic degradation via ester linkages, as a functional monomer in the reaction formulation. We could demonstrate that by systematically varying the number of biodegradable segments, the morphology of the nanocarriers can be tuned without imparting the efficient encapsulation of hydrophilic payload (>85% encapsulation efficiency) and its transfer from organic to aqueous phase. The developed nanocarriers allow for a fast release of hydrophilic payload that depends on pH, the number of biodegradable segments and nanocarrier morphology. Succinctly put, this study provides important information to develop pH-responsive nanocarriers with tunable morphology, using interfacial reactions in the inverse miniemulsion process, by controlling the number of degradable segments to adjust the release profile depending on the type of application envisaged.

5.
Biomacromolecules ; 17(8): 2562-71, 2016 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-27345494

RESUMO

Conjugated polymers have attracted significant interest in the bioimaging field due to their excellent optical properties and biocompatibility. Tailor-made poly(p-phenylenevinylene) (PPV) conjugated polymer nanoparticles (NPs) are in here described. Two different nanoparticle systems using poly[2-methoxy-5-(3',7'-dimethoxyoctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) and a functional statistical copolymer 2-(5'-methoxycarbonylpentyloxy)-5-methoxy-1,4-phenylenevinylene (CPM-MDMO-PPV), containing ester groups on the alkoxy side chains, were synthesized by combining miniemulsion and solvent evaporation processes. The hydrolysis of ester groups into carboxylic acid groups on the CPM-MDMO-PPV NPs surface allows for biomolecule conjugation. The NPs exhibited excellent optical properties with a high fluorescent brightness and photostability. The NPs were in vitro tested as potential fluorescent nanoprobes for studying cell populations within the central nervous system. The cell studies demonstrated biocompatibility and surface charge dependent cellular uptake of the NPs. This study highlights that PPV-derivative based particles are a promising bioimaging probe and can cater potential applications in the field of nanomedicine.


Assuntos
Astrócitos/metabolismo , Comunicação Celular , Endotélio Vascular/metabolismo , Microglia/metabolismo , Imagem Molecular/métodos , Nanopartículas/química , Polímeros/química , Astrócitos/citologia , Endotélio Vascular/citologia , Corantes Fluorescentes , Humanos , Microglia/citologia , Nanoporos , Propriedades de Superfície
6.
Chem Commun (Camb) ; 51(87): 15858-15861, 2015 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-26377628

RESUMO

Functional nanocarriers were synthesized using an in situ inverse miniemulsion polymerization employing thiol-isocyanate reactions at the droplet interface to encapsulate hydrophilic payloads. The morphology of the nanocarriers is conveniently tunable by varying the reaction conditions and the dispersions are easily transferable to the aqueous phase.


Assuntos
Sistemas de Liberação de Medicamentos , Isocianatos/química , Nanopartículas/química , Compostos de Sulfidrila/química , Antibióticos Antineoplásicos/química , Doxorrubicina/química , Emulsões , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Tamanho da Partícula , Cloreto de Potássio/química , Tolueno 2,4-Di-Isocianato/química , Uretana/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...