Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 111(39): E4066-75, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25118277

RESUMO

Aberrant expression of immature truncated O-glycans is a characteristic feature observed on virtually all epithelial cancer cells, and a very high frequency is observed in early epithelial premalignant lesions that precede the development of adenocarcinomas. Expression of the truncated O-glycan structures Tn and sialyl-Tn is strongly associated with poor prognosis and overall low survival. The genetic and biosynthetic mechanisms leading to accumulation of truncated O-glycans are not fully understood and include mutation or dysregulation of glycosyltransferases involved in elongation of O-glycans, as well as relocation of glycosyltransferases controlling initiation of O-glycosylation from Golgi to endoplasmic reticulum. Truncated O-glycans have been proposed to play functional roles for cancer-cell invasiveness, but our understanding of the biological functions of aberrant glycosylation in cancer is still highly limited. Here, we used exome sequencing of most glycosyltransferases in a large series of primary and metastatic pancreatic cancers to rule out somatic mutations as a cause of expression of truncated O-glycans. Instead, we found hypermethylation of core 1 ß3-Gal-T-specific molecular chaperone, a key chaperone for O-glycan elongation, as the most prevalent cause. We next used gene editing to produce isogenic cell systems with and without homogenous truncated O-glycans that enabled, to our knowledge, the first polyomic and side-by-side evaluation of the cancer O-glycophenotype in an organotypic tissue model and in xenografts. The results strongly suggest that truncation of O-glycans directly induces oncogenic features of cell growth and invasion. The study provides support for targeting cancer-specific truncated O-glycans with immunotherapeutic measures.


Assuntos
Neoplasias Pancreáticas/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Animais , Adesão Celular , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Exoma/genética , Glicômica , Glicosilação , Xenoenxertos , Humanos , Camundongos , Camundongos Knockout , Camundongos Nus , Camundongos SCID , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Mutação , Invasividade Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Fenótipo , Proteômica , Transdução de Sinais
2.
Mol Cell Biol ; 33(21): 4321-33, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24001767

RESUMO

DNA cytosine methylation is an epigenetic modification involved in the transcriptional repression of genes controlling a variety of physiological processes, including hematopoiesis. DNA methyltransferase 1 (Dnmt1) is a key enzyme involved in the somatic inheritance of DNA methylation and thus plays a critical role in epigenomic stability. Aberrant methylation contributes to the pathogenesis of human cancer and of hematologic malignancies in particular. To gain deeper insight into the function of Dnmt1 in lymphoid malignancies, we genetically inactivated Dnmt1 in a mouse model of MYC-induced T-cell lymphomagenesis. We show that loss of Dnmt1 delays lymphomagenesis by suppressing normal hematopoiesis and impairing tumor cell proliferation. Acute inactivation of Dnmt1 in primary lymphoma cells rapidly induced apoptosis, indicating that Dnmt1 is required to sustain T-cell lymphomas. Using high-resolution genome-wide profiling, we identified differentially methylated regions between control and Dnmt1-deficient lymphomas, demonstrating a locus-specific function for Dnmt1 in both maintenance and de novo promoter methylation. Dnmt1 activity is independent of the presence of Dnmt3a or Dnmt3b in de novo promoter methylation of the H2-Ab1 gene. Collectively, these data show for the first time that Dnmt1 is critical for the prevention and maintenance of T-cell lymphomas and contributes to aberrant methylation by both de novo and maintenance methylation.


Assuntos
DNA (Citosina-5-)-Metiltransferases/fisiologia , Linfoma de Células T/genética , Proteínas Proto-Oncogênicas c-myc/genética , Animais , Carcinogênese/genética , Proliferação de Células , Sobrevivência Celular , Células Cultivadas , DNA (Citosina-5-)-Metiltransferase 1 , Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Hematopoese , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe II/metabolismo , Camundongos , Camundongos Transgênicos , Regiões Promotoras Genéticas , Análise de Sequência de DNA , Linfócitos T/fisiologia , Transcrição Gênica , Transcriptoma
3.
J Clin Invest ; 122(1): 163-77, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22133874

RESUMO

DNA methyltransferase 3B (Dnmt3b) belongs to a family of enzymes responsible for methylation of cytosine residues in mammals. DNA methylation contributes to the epigenetic control of gene transcription and is deregulated in virtually all human tumors. To better understand the generation of cancer-specific methylation patterns, we genetically inactivated Dnmt3b in a mouse model of MYC-induced lymphomagenesis. Ablation of Dnmt3b function using a conditional knockout in T cells accelerated lymphomagenesis by increasing cellular proliferation, which suggests that Dnmt3b functions as a tumor suppressor. Global methylation profiling revealed numerous gene promoters as potential targets of Dnmt3b activity, the majority of which were demethylated in Dnmt3b-/- lymphomas, but not in Dnmt3b-/- pretumor thymocytes, implicating Dnmt3b in maintenance of cytosine methylation in cancer. Functional analysis identified the gene Gm128 (which we termed herein methylated in normal thymocytes [Ment]) as a target of Dnmt3b activity. We found that Ment was gradually demethylated and overexpressed during tumor progression in Dnmt3b-/- lymphomas. Similarly, MENT was overexpressed in 67% of human lymphomas, and its transcription inversely correlated with methylation and levels of DNMT3B. Importantly, knockdown of Ment inhibited growth of mouse and human cells, whereas overexpression of Ment provided Dnmt3b+/+ cells with a proliferative advantage. Our findings identify Ment as an enhancer of lymphomagenesis that contributes to the tumor suppressor function of Dnmt3b and suggest it could be a potential target for anticancer therapies.


Assuntos
DNA (Citosina-5-)-Metiltransferases/deficiência , Linfoma/etiologia , Oncogenes , Animais , Proliferação de Células , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica , Instabilidade Genômica , Humanos , Linfoma/genética , Linfoma/metabolismo , Linfoma/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Linfócitos T/imunologia , Linfócitos T/patologia , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/genética , Regulação para Cima , DNA Metiltransferase 3B
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...