Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 620(7973): 336-343, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37558848

RESUMO

Anthropogenic climate change is predicted to severely impact the global hydrological cycle1, particularly in tropical regions where agriculture-based economies depend on monsoon rainfall2. In the Horn of Africa, more frequent drought conditions in recent decades3,4 contrast with climate models projecting precipitation to increase with rising temperature5. Here we use organic geochemical climate-proxy data from the sediment record of Lake Chala (Kenya and Tanzania) to probe the stability of the link between hydroclimate and temperature over approximately the past 75,000 years, hence encompassing a sufficiently wide range of temperatures to test the 'dry gets drier, wet gets wetter' paradigm6 of anthropogenic climate change in the time domain. We show that the positive relationship between effective moisture and temperature in easternmost Africa during the cooler last glacial period shifted to negative around the onset of the Holocene 11,700 years ago, when the atmospheric carbon dioxide concentration exceeded 250 parts per million and mean annual temperature approached modern-day values. Thus, at that time, the budget between monsoonal precipitation and continental evaporation7 crossed a tipping point such that the positive influence of temperature on evaporation became greater than its positive influence on precipitation. Our results imply that under continued anthropogenic warming, the Horn of Africa will probably experience further drying, and they highlight the need for improved simulation of both dynamic and thermodynamic processes in the tropical hydrological cycle.


Assuntos
Mudança Climática , Modelos Climáticos , Secas , Chuva , Temperatura , Ciclo Hidrológico , Água , Atmosfera/química , Dióxido de Carbono/análise , Mudança Climática/história , Secas/estatística & dados numéricos , Sedimentos Geológicos/química , História Antiga , Umidade , Quênia , Lagos/química , Tanzânia , Termodinâmica , Clima Tropical , Volatilização , Água/análise
2.
Paleoceanogr Paleoclimatol ; 34(4): 546-566, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31245790

RESUMO

Current climate change may induce positive carbon cycle feedbacks that amplify anthropogenic warming on time scales of centuries to millennia. Similar feedbacks might have been active during a phase of carbon cycle perturbation and global warming, termed the Paleocene-Eocene Thermal Maximum (PETM, 56 million years ago). The PETM may help constrain these feedbacks and their sensitivity to warming. We present new high-resolution carbon isotope and sea surface temperature data from Ocean Drilling Program Site 959 in the Equatorial Atlantic. With these and existing data from the New Jersey Shelf and Maud Rise, Southern Ocean, we quantify the lead-lag relation between PETM warming and the carbon input that caused the carbon isotope excursion (CIE). We show ~2 °C of global warming preceded the CIE by millennia, strongly implicating CO2-driven warming triggered a positive carbon cycle feedback. We further compile new and published barium (Ba) records encompassing continental shelf, slope, and deep ocean settings. Based on this compilation, we calculate that average Ba burial rates approximately tripled during the PETM, which may require an additional source of Ba to the ocean. Although the precipitation pathway is not well constrained, dissolved Ba stored in sulfate-depleted pore waters below methane hydrates could represent an additional source. We speculate the most complete explanation for early warming and rise in Ba supply is that hydrate dissociation acted as a positive feedback and caused the CIE. These results imply hydrates are more temperature sensitive than previously considered, and may warrant reconsideration of the political assignment of 2 °C warming as a safe future scenario.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...