Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Essays Biochem ; 67(3): 615-627, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-36876890

RESUMO

Alginate is a polysaccharide consisting of ß-D-mannuronate (M) and α-L-guluronate (G) produced by brown algae and some bacterial species. Alginate has a wide range of industrial and pharmaceutical applications, owing mainly to its gelling and viscosifying properties. Alginates with high G content are considered more valuable since the G residues can form hydrogels with divalent cations. Alginates are modified by lyases, acetylases, and epimerases. Alginate lyases are produced by alginate-producing organisms and by organisms that use alginate as a carbon source. Acetylation protects alginate from lyases and epimerases. Following biosynthesis, alginate C-5 epimerases convert M to G residues at the polymer level. Alginate epimerases have been found in brown algae and alginate-producing bacteria, predominantly Azotobacter and Pseudomonas species. The best characterised epimerases are the extracellular family of AlgE1-7 from Azotobacter vinelandii(Av). AlgE1-7 all consist of combinations of one or two catalytic A-modules and one to seven regulatory R-modules, but even though they are sequentially and structurally similar, they create different epimerisation patterns. This makes the AlgE enzymes promising for tailoring of alginates to have the desired properties. The present review describes the current state of knowledge regarding alginate-active enzymes with focus on epimerases, characterisation of the epimerase reaction, and how alginate epimerases can be used in alginate production.


Assuntos
Azotobacter vinelandii , Liases , Racemases e Epimerases , Alginatos/química , Carboidratos Epimerases/química
2.
Biomol NMR Assign ; 16(2): 343-347, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36042150

RESUMO

To fully utilize carbohydrates from seaweed biomass, the degradation of the family of polysaccharides known as alginates must be understood. A step in the degradation of alginate is the conversion of 4,5-unsaturated monouronates to 4-deoxy-L-erythro-5-hexoseulose catalysed by the enzyme KdgF. In this study BeKdgF from Bacteroides eggerthii from the human gut microbiota has been produced isotopically labelled in Escherichia coli. Here the 1H, 13C, and 15N NMR chemical shift assignment for BeKdgF is reported.


Assuntos
Alginatos , Bacteroides , Alginatos/química , Alginatos/metabolismo , Escherichia coli/metabolismo , Humanos , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...