Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EC Dent Sci ; 19(2)2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33196061

RESUMO

Soaring gold prices have created an almost impossible void in the Dental Materials supply reserves for affordable patient posterior crowns. Fortunately, aerotech fiber-reinforced composite (FRC) materials in use for many diverse structural applications can be developed for dentistry to replace gold with computer-assisted design/computer-assisted manufacture (CAD/CAM) technology. Current dental ceramics or high-strength oxide ceramics like alumina and zirconia available for CAD/CAM have extremely poor fracture-toughness properties and can propagate microscopic cracks rapidly to sudden adverse brittle failure. As a highly promising alternative, exceptional FRC fracture toughness properties counteract brittle failure with high-strength fibers that act as major barriers to crack propagation. In addition, excellent rapid FRC CAD/CAM machining can offer one-patient appointments for single crowns. FRCs have high-strength fibers coupled into a polymer matrix with the ability to form strong covalent bonds with resin adhesives whereas ceramics do not bond well and oxide ceramics have non-reactive inert surfaces making resin bonding extremely difficult. Prominent adhesive free-radical covalent bonding by FRCs then provides a great opportunity to achieve a crown marginal reline directly on the patients clinical tooth for possible near zero-gap defect tolerances. To place crown gingival marginal defects in proper perspective, gaps between the tooth and crown expose luting cements that can wash out and provide space for microbial plaque growth. Bacterial toxins released from a crown-tooth interface can subsequently produce secondary decay, gingival inflammation and eventually under severe plaque environments breed periodontal disease with bone loss.

2.
EC Dent Sci ; 17(5): 430-459, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-31552397

RESUMO

Newer dental fiber-reinforced composites can provide service with less wear than enamel. Further, fibers in bulk molding form pack oriented parallel to the occlusal-dentinal floor planes that wear by uniform thinning into micrometer-sized fiber remnants and subsequent flat plate-like particulate bond by compression back into the polymer matrix. The fiber wear-in process is accomplished by creating fine crystalline chemically resistant nanoparticulates that become an exceptional polishing agent. Resulting consolidation by the underlying fiber network squeezes plasticized polymer and partially hydrolyzed polymer chains along with residual monomer, pendant methacrylate groups and nano-sized particulate to the surface that surround larger exposed micrometer-sized particulate and smallest fiber remnants. Eventually consolidation of the polymer matrix overall squeezes up and engulfs the top particulate or fiber remnants forming a smooth polished hard polymer-matrix composite wear surface probably filled with small nanoparticulate. The final hardened polymer surface may show particulate from worn fibers, but displays no signs of the original fibers after an in vitro wear simulator test comparable to 3 years of clinical service. Nanoparticulates formed from the fibers that have broken down generally reconsolidate back in to the top surface for a polished toughened polymer surface or behave as a polishing agent. The underlying fiber-reinforced composite network supports wear loads to greatly reduce wear especially as fibers extend well beyond a critical length that prevents fiber debonding from the matrix. Further, fiber-reinforced composite consolidation can aid in cavity molding placement by applied pressure to squeeze monomer, resin and particulates from the fiber network toward collapsing or filling in voids and removing entrapped air.

3.
AIMS Biophys ; 4(2): 240-283, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29202036

RESUMO

A breakthrough has been discovered in pathology chemistry related to increasing molecular structure that can interfere with oxygen diffusion through cell membranes. Free radicals can crosslink unsaturated low-viscosity fatty acid oils by chain-growth polymerization into more viscous liquids and even solids. Free radicals are released by mitochondria in response to intermittent hypoxia that can increase membrane molecular organization to reduce fluidity and oxygen diffusion in a possible continuing vicious cycle toward pathological disease. Alternate computational chemistry demonstrates molecular bond dynamics in free energy for cell membrane physiologic movements. Paired electrons in oxygen and nitrogen atoms require that oxygen bonds rotate and nitrogen bonds invert to seek polar nano-environments and hide from nonpolar nano-environments thus creating fluctuating instability at a nonpolar membrane and polar biologic fluid interface. Subsequent mechanomolecular movements provide free energy to increase diffusion by membrane transport of molecules and oxygen into the cell, cell-membrane signaling/recognition/defense in addition to protein movements for enzyme mixing. In other chemistry calcium bonds to membrane phosphates primarily on the outer plasma cell membrane surface to influence the membrane firing threshold for excitability and better seal out water permeation. Because calcium is an excellent metal conductor and membrane phosphate headgroups form a semiconductor at the biologic fluid interface, excess electrons released by mitochondria may have more broad dissipation potential by safe conduction through calcium atomic-sized circuits on the outer membrane surface. Regarding medical conditions, free radicals are known to produce pathology especially in age-related disease in addition to aging. Because cancer cell membranes develop extreme polymorphism that has been extensively followed in research, accentuated easily-visualized free-radical models are developed. In terms of treatment, use of vitamin nutrient supplements purported to be antioxidants that remove free radicals has not proved worthwhile in clinical trials presumably due to errors with early antioxidant measurements based on inaccurate colorimetry tests. However, newer covalent-bond shrinkage tests now provide accurate measurements for free-radical inhibitor hydroquinone and other molecules toward drug therapy.

5.
J Nat Sci ; 3(2)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28691101

RESUMO

Clinicians have been aware that posterior dental particulate-filled composites (PFCs) have many placement disadvantages and indeed fail clinically at an average rate faster than amalgam alloys. Secondary caries is most commonly identified as the chief failure mechanism for both dental PFCs and amalgam. In terms of a solution, fiber-reinforced composites (FRCs) above critical length (Lc) can provide mechanical property safety factors with compound molding packing qualities to reduce many problems associated with dental PFCs. Discontinuous chopped fibers above the necessary Lc have been incorporated into dental PFCs to make consolidated molding compounds that can be tested for comparisons with PFC controls on mechanical properties, wear resistance, void-defect occurrence and packing ability to reestablish the interproximal contact. Further, imaging characterizations can aid in providing comparisons for FRCs with other materials using scanning electron microscopy, atomic force microscopy and photographs. Also, the amalgam filling material has finally been tested by appropriate ASTM flexural bending methods that eliminate shear failure associated with short span lengths in dental standards for comparison with dental PFCs to best explain increased longevity for the amalgam when compared to dental PFCs. Accurate mechanical tests also provide significant proof for superior advantages with FRCs. Mechanical properties tested included flexural strength, yield strength, modulus, resilience, work of fracture, critical strain energy release and critical stress intensity factor. FRC molding compounds with fibers above Lc extensively improve all mechanical properties over PFC dental paste and over the amalgam for all mechanical properties except modulus. The dental PFC also demonstrated superior mechanical properties over the amalgam except modulus to provide a better explanation for increased PFC failure due to secondary caries. With lower PFC modulus, increased adhesive bond breakage is expected from greater interlaminar shearing as the PFC accentuates straining deflections compared to amalgam at the higher modulus tooth enamel margins during loading. Preliminary testing for experimental FRCs with fibers above Lc demonstrated three-body wear even less than enamel to reduce the possibility of marginal ditching as a factor in secondary caries seen with both PFCs and amalgam. Further, FRC molding compounds with chopped fibers above Lc properly impregnated with photocure resin can pack with condensing forces higher than the amalgam to eliminate voids in the proximal box commonly seen with dental PFCs and reestablish interproximal contacts better than amalgam. Subsequent higher FRC packing forces can aid in squeezing monomer, resin, particulate and nanofibers deeper into adhesive mechanical bond retention sites and then leave a higher concentration of insoluble fibers and particulate as moisture barriers at the cavity margins. Also, FRC molding compounds can incorporate triclosan antimicrobial and maintain a strong packing condensing force that cannot be accomplished with PFCs which form a sticky gluey consistency with triclosan. In addition, large FRC packing forces allow higher concentrations of the hydrophobic ethoxylated bis phenol A dimethacrylate (BisEMA) low-viscosity oligomer resin that reduces water sorption and solubility to then still maintain excellent consistency. Therefore, photocure molding compounds with fibers above Lc appear to have many exceptional properties and design capabilities as improved alternatives for replacing both PFCs and amalgam alloys in restorative dental care.

6.
J Compos ; 20162016.
Artigo em Inglês | MEDLINE | ID: mdl-27642629

RESUMO

Photocure fiber-reinforced composites (FRCs) with varying chopped quartz-fiber lengths were incorporated into a dental photocure zirconia-silicate particulate-filled composite (PFC) for mechanical test comparisons with a popular commercial spherical-particle amalgam. FRC lengths included 0.5-mm, 1.0 mm, 2.0 mm, and 3.0 mm all at a constant 28.2 volume percent. Four-point fully articulated fixtures were used according to American Standards Test Methods with sample dimensions of 2×2×50 mm3 across a 40 mm span to provide sufficient Euler flexural bending and prevent top-load compressive shear error. Mechanical properties for flexural strength, modulus, yield strength, resilience, work of fracture, critical strain energy release, critical stress intensity factor, and strain were obtained for comparison. Fiber length subsequently correlated with increasing all mechanical properties, p < 1.1×10-5. Although the modulus was significantly statistically higher for amalgam than all composites, all FRCs and even the PFC had higher values than amalgam for all other mechanical properties. Because amalgams provide increased longevity during clinical use compared to the standard PFCs, modulus would appear to be a mechanical property that might sufficiently reduce margin interlaminar shear stress and strain-related microcracking that could reduce failure rates. Also, since FRCs were tested with all mechanical properties that statistically significantly increased over the PFC, new avenues for future development could be provided toward surpassing amalgam in clinical longevity.

7.
AIMS Mol Sci ; 3(1): 88-103, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27280150

RESUMO

Triclosan antimicrobial molecular fluctuating energies of nonbonding electron pairs for the oxygen atom by ether bond rotations are reviewed with conformational computational chemistry analyses. Subsequent understanding of triclosan alternating ether bond rotations is able to help explain several material properties in Polymer Science. Unique bond rotation entanglements between triclosan and the polymer chains increase both the mechanical properties of polymer toughness and strength that are enhanced even better through secondary bonding relationships. Further, polymer blend compatibilization is considered due to similar molecular relationships and polarities. With compatibilization of triclosan in polymers a more uniform stability for nonpolar triclosan in the polymer solid state is retained by the antimicrobial for extremely low release with minimum solubility into aqueous solution. As a result, triclosan is projected for long extended lifetimes as an antimicrobial polymer additive. Further, triclosan rapid alternating ether bond rotations disrupt secondary bonding between chain monomers in the resin state to reduce viscosity and enhance polymer blending. Thus, triclosan is considered for a polymer additive with multiple properties to be an antimicrobial with additional benefits as a nonpolar toughening agent and a hydrophobic wetting agent. The triclosan material relationships with alternating ether bond rotations are described through a complete different form of medium by comparisons with known antimicrobial properties that upset bacterial cell membranes through rapid fluctuating mechanomolecular energies. Also, triclosan bond entanglements with secondary bonding can produce structural defects in weak bacterial lipid membranes requiring pliability that can then interfere with cell division. Regarding applications with polymers, triclosan can be incorporated by mixing into a resin system before cure, melt mixed with thermoplastic polymers that set on cooling into a solid or alternatively applied as a coating through several different methods with dissolving into an organic solvent and dried on by evaporation as a common means.

8.
J Nat Sci ; 1(3)2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25879080

RESUMO

Triclosan is a diphenyl ether antimicrobial that has been analyzed by computational conformational chemistry for an understanding of Mechanomolecular Theory. Subsequent energy profile analysis combined with easily seen three-dimensional chemistry structure models for the nonpolar molecule Triclosan show how single bond rotations can alternate rapidly at a polar and nonpolar interface. Bond rotations for the center ether oxygen atom of the two aromatic rings then expose or hide nonbonding lone-pair electrons for the oxygen atom depending on the polar nature of the immediate local molecular environment. Rapid bond movements can subsequently produce fluctuations as vibration energy. Consequently, related mechanical molecular movements calculated as energy relationships by forces acting through different bond positions can help improve on current Mechanomolecular Theory. A previous controversy reported as a discrepancy in literature contends for a possible bacterial resistance from Triclosan antimicrobial. However, findings in clinical settings have not reported a single case for Triclosan bacterial resistance in over 40 years that has been documented carefully in government reports. As a result, Triclosan is recommended whenever there is a health benefit consistent with a number of approvals for use of Triclosan in healthcare devices. Since Triclosan is the most researched antimicrobial ever, literature meta analysis with computational chemistry can best describe new molecular conditions that were previously impossible by conventional chemistry methods. Triclosan vibrational energy can now explain the molecular disruption of bacterial membranes. Further, Triclosan mechanomolecular movements help illustrate use in polymer matrix composites as an antimicrobial with two new additive properties as a toughening agent to improve matrix fracture toughness from microcracking and a hydrophobic wetting agent to help incorporate strengthening fibers. Interrelated Mechanomolecular Theory by oxygen atom bond rotations or a nitrogen-type pyramidal inversion can be shown to produce energy at a polar and nonpolar boundary condition to better make clear membrane transport of other molecules, cell recognition/signaling/defense and enzyme molecular "mixing" action.

9.
Artigo em Inglês | MEDLINE | ID: mdl-25598972

RESUMO

Single-bond rotations or pyramidal inversions tend to either hide or expose relative energies that exist for atoms with nonbonding lone-pair electrons. Availability of lone-pair electrons depends on overall molecular electron distributions and differences in the immediate polarity of the surrounding pico/nanoenvironment. Stereochemistry three-dimensional aspects of molecules provide insight into conformations through single-bond rotations with associated lone-pair electrons on oxygen atoms in addition to pyramidal inversions with nitrogen atoms. When electrons are protected, potential energy is sheltered toward an energy minimum value to compatibilize molecularly with nonpolar environments. When electrons are exposed, maximum energy is available toward polar environment interactions. Computational conformational analysis software calculated energy profiles that exist during specific oxygen ether single-bond rotations with easy-to-visualize three-dimensional models for the trichlorinated bisaromatic ether triclosan antimicrobial polymer additive. As shown, fluctuating alternating bond rotations can produce complex interactions between molecules to provide entanglement strength for polymer toughness or alternatively disrupt weak secondary bonds of attraction to lower resin viscosity for new additive properties with nonpolar triclosan as a hydrophobic toughening/wetting agent. Further, bond rotations involving lone-pair electrons by a molecule at a nonpolar-hydrocarbon-membrane/polar-biologic-fluid interface might become sufficiently unstable to provide free mechanomolecular energies to disrupt weaker microbial membranes, for membrane transport of molecules into cells, provide cell signaling/recognition/defense and also generate enzyme mixing to speed reactions.

10.
Metals (Basel) ; 4(4): 549-569, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25635227

RESUMO

The aim of the article is to present recent developments in material research with bisphenyl-polymer/carbon-fiber-reinforced composite that have produced highly influential results toward improving upon current titanium bone implant clinical osseointegration success. Titanium is now the standard intra-oral tooth root/bone implant material with biocompatible interface relationships that confer potential osseointegration. Titanium produces a TiO2 oxide surface layer reactively that can provide chemical bonding through various electron interactions as a possible explanation for biocompatibility. Nevertheless, titanium alloy implants produce corrosion particles and fail by mechanisms generally related to surface interaction on bone to promote an inflammation with fibrous aseptic loosening or infection that can require implant removal. Further, lowered oxygen concentrations from poor vasculature at a foreign metal surface interface promote a build-up of host-cell-related electrons as free radicals and proton acid that can encourage infection and inflammation to greatly influence implant failure. To provide improved osseointegration many different coating processes and alternate polymer matrix composite (PMC) solutions have been considered that supply new designing potential to possibly overcome problems with titanium bone implants. Now for important consideration, PMCs have decisive biofunctional fabrication possibilities while maintaining mechanical properties from addition of high-strengthening varied fiber-reinforcement and complex fillers/additives to include hydroxyapatite or antimicrobial incorporation through thermoset polymers that cure at low temperatures. Topics/issues reviewed in this manuscript include titanium corrosion, implant infection, coatings and the new epoxy/carbon-fiber implant results discussing osseointegration with biocompatibility related to nonpolar molecular attractions with secondary bonding, carbon fiber in vivo properties, electrical semiconductors, stress transfer, additives with low thermal PMC processing and new coating possibilities.

11.
Scientifica (Cairo) ; 2013: 143589, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278767

RESUMO

Polymer free-radical lipid alkene chain-growth biological models particularly for hypoxic cellular mitochondrial metabolic waste can be used to better understand abnormal cancer cell morphology and invasive metastasis. Without oxygen as the final electron acceptor for mitochondrial energy synthesis, protons cannot combine to form water and instead mitochondria produce free radicals and acid during hypoxia. Nonuniform bond-length shrinkage of membranes related to erratic free-radical covalent crosslinking can explain cancer-cell pleomorphism with epithelial-mesenchymal transition for irregular membrane borders that "ruffle" and warp over stiff underlying actin fibers. Further, mitochondrial hypoxic conditions produce acid that can cause molecular degradation. Subsequent low pH-activated enzymes then provide paths for invasive cell movement through tissue and eventually blood-born metastasis. Although free-radical crosslinking creates irregularly shaped membranes with structural actin-polymerized fiber extensions as filopodia and lamellipodia, due to rapid cell division the overall cell modulus (approximately stiffness) is lower than normal cells. When combined with low pH-activated enzymes and lower modulus cells, smaller cancer stem cells subsequently have a large advantage to follow molecular destructive pathways and leave the central tumor. In addition, forward structural spike-like lamellipodia protrusions can leverage to force lower-modulus cancer cells through narrow openings. By squeezing and deforming even smaller to allow for easier movement through difficult passageways, cancer cells can travel into adjacent tissues or possibly metastasize through the blood to new tissue.

12.
Sampe J ; 2013: 737-752, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-25620817

RESUMO

Critical stress intensity factor (KIc) has been an approximation for fracture toughness using only load-cell measurements. However, artificial man-made cracks several orders of magnitude longer and wider than natural flaws have required a correction factor term (Y) that can be up to about 3 times the recorded experimental value [1-3]. In fact, over 30 years ago a National Academy of Sciences advisory board stated that empirical KIc testing was of serious concern and further requested that an accurate bulk fracture toughness method be found [4]. Now that fracture toughness can be calculated accurately by numerical integration from the load/deflection curve as resilience, work of fracture (WOF) and strain energy release (SIc) [5, 6], KIc appears to be unnecessary. However, the large body of previous KIc experimental test results found in the literature offer the opportunity for continued meta analysis with other more practical and accurate fracture toughness results using energy methods and numerical integration. Therefore, KIc is derived from the classical Griffith Crack Theory [6] to include SIc as a more accurate term for strain energy release rate (𝒢Ic), along with crack surface energy (γ), crack length (a), modulus (E), applied stress (σ), Y, crack-tip plastic zone defect region (rp) and yield strength (σys) that can all be determined from load and deflection data. Polymer matrix discontinuous quartz fiber-reinforced composites to accentuate toughness differences were prepared for flexural mechanical testing comprising of 3 mm fibers at different volume percentages from 0-54.0 vol% and at 28.2 vol% with different fiber lengths from 0.0-6.0 mm. Results provided a new correction factor and regression analyses between several numerical integration fracture toughness test methods to support KIc results. Further, bulk KIc accurate experimental values are compared with empirical test results found in literature. Also, several fracture toughness mechanisms are discussed especially for fiber-reinforced composites.

13.
Int Res J Pure Appl Chem ; 2(4): 247-285, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-25909053

RESUMO

AIMS: To provide common Organic Chemistry/Polymer Science thermoset free-radical crosslinking Sciences for Medical understanding and also present research findings for several common vitamins/antioxidants with a new class of drugs known as free-radical inhibitors. STUDY DESIGN: Peroxide/Fenton transition-metal redox couples that generate free radicals were combined with unsaturated lipid oils to demonstrate thermoset-polymer chain growth by crosslinking with the α-ß-unsaturated aldehyde acrolein into rubbery/adhesive solids. Further, Vitamin A and beta carotene were similarly studied for crosslink pathological potential. Also, free-radical inhibitor hydroquinone was compared for antioxidant capability with Vitamin E. PLACE AND DURATION OF STUDY: Department of Materials Science and Engineering and Department of Biomaterials, University of Alabama at Birmingham, between June 2005 and August 2012. METHODOLOGY: Observations were recorded for Fenton free-radical crosslinking of unsaturated lipids and vitamin A/beta carotene by photography further with weight measurements and percent-shrinkage testing directly related to covalent crosslinking of unsaturated lipids recorded over time with different concentrations of acrolein. Also, hydroquinone and vitamin E were compared at concentrations from 0.0-7.3wt% as antioxidants for reductions in percent-shrinkage measurements, n = 5. RESULTS: Unsaturated lipid oils responded to Fenton thermoset-polymer reactive secondary sequence reactions only by acrolein with crosslinking into rubbery-type solids and different non-solid gluey products. Further, molecular oxygen crosslinking was demonstrated with lipid peroxidation and acrolein at specially identified margins. By peroxide/Fenton free-radical testing, both vitamin A and beta-carotene demonstrated possible pathology chemistry for chain-growth crosslinking. During lipid/acrolein testing over a 50 hour time period at 7.3wt% antioxidants, hydroquinone significantly reduced percent shrinkage greatly compared to the standard antioxidant vitamin E, %shrinkage at 11.6 ±1.3 for hydroquinone and 27.8 ±2.2 for vitamin E, P = .001. CONCLUSION: Free radicals crosslinked unsaturated lipid fatty acids into thermoset polymers through Fenton reactions when combined with acrolein. Further, hydroquinone was a superior antioxidant to vitamin E.

14.
Int J Polym Sci ; 20112011 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-25553057

RESUMO

Aerospace/aeronautical thermoset bisphenyl-polymer/carbon-fiber-reinforced composites are considered as new advanced materials to replace metal bone implants. In addition to well-recognized nonpolar chemistry with related bisphenol-polymer estrogenic factors, carbon-fiber-reinforced composites can offer densities and electrical conductivity/resistivity properties close to bone with strengths much higher than metals on a per-weight basis. In vivo bone-marrow tests with Sprague-Dawley rats revealed far-reaching significant osseoconductivity increases from bisphenyl-polymer/carbon-fiber composites when compared to state-of-the-art titanium-6-4 alloy controls. Midtibial percent bone area measured from the implant surface increased when comparing the titanium alloy to the polymer composite from 10.5% to 41.6% at 0.8 mm, P < 10-4, and 19.3% to 77.7% at 0.1 mm, P < 10-8. Carbon-fiber fragments planned to occur in the test designs, instead of producing an inflammation, stimulated bone formation and increased bone integration to the implant. In addition, low-thermal polymer processing allows incorporation of minerals and pharmaceuticals for future major tissue-engineering potential.

15.
Polym Compos ; 28(3): 311-324, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25346562

RESUMO

A fracture toughness analysis for discontinuous fiber reinforcement was evaluated as a function of fiber volume percent (Vf) using advanced flexural bend tests. Fully articulated fixtures with 40-mm spans were used to examine specimens (2 × 2 × 50 mm3) under conditions of Euler-type bending to reduce shearing effects. Testing for fracture toughness in standardized international units (kJ/m2) using fundamental mechanics-of-materials energy methods by strain energy was then applied for assessment of resilience and work of fracture (WOF). Fracture toughness was also measured as strain energy release (SERIC) for the condition of unstable fracture between peak load and 5% maximum deflection past peak load. Energies were calculated by numerical integration using the trapezoidal rule from the area under the load-deflection curve. Fracture depths were normalized using sample dimensions from microscopy imaging for a combined correlation matrix analysis of all mechanical test data. Vf significantly correlated with resilience, WOF, and SERIC, but negatively correlated with degree of crack depth with p < 0.0000005. All measured interrelated properties also significantly correlated with one another (p < 0.000001). Significant fracture toughness differences between particulate-filled and fiber-reinforced composites began when adding fiber reinforcement at 10.3 Vf for resilience, 5.4 Vf for WOF, and 5.4 Vf for SERIC (p < 0.05).

16.
Polym Compos ; 28(3): 294-310, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25382895

RESUMO

Micromechanics for fiber volume percent (Vf) from 0.0Vf to 54.0 Vf were conducted using (3 mm long × 9 µm diameter) high-purity quartz fibers in a visible-light vinyl ester particulate-filled photocure resin. MTS fully articulated four-point bend fixtures were used with a 40 mm test span and 50 × 2 × 2 mm3 sample dimensions. Specimens were tested following the combined modified ASTM standards for advanced ceramics ASTM-C-1161-94 and polymers ASTM-D-6272-00 for modulus, flexural strength, and yield strength. Experimental data provided reliable statistical support for the dominant fiber contribution expressed through the rule-of-mixtures theory as a valid representation of micromechanical physics. The rule-of-mixtures micromechanics described by Vf could explain 92, 85, and 78% of the variability related to modulus, flexural strength, and yield strength respectively. Statistically significant improvements with fiber addition began at 10.3Vf for modulus, 5.4Vf for flexural strength, and 10.3Vf for yield strength, p < 0.05. In addition, correlation matrix analysis was performed for all mechanical test data. An increase in Vf correlated significantly with increases in modulus, flexural strength, and yield strength as measured by the four-point bending test, p < 10-10. All mechanical properties in turn correlated highly significantly with one another, p < 10-9.

17.
Polym Compos ; 27(2): 153-169, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25382894

RESUMO

The objective was to test how increasing fiber length above the critical length would influence mechanical properties and fracture crack propagation. Micromechanics considering fiber/matrix stress-transfer was used to evaluate the results in addition to a shear debonding volume percent correction term necessary for the final analysis. Fiber lengths of 0.5, 1.0, 2.0, 3.0, and 6.0 mm with 9 µm diameters were added into a photocure vinyl ester particulate-filled composite at a uniform 28.2 vol%. Mechanical flexural testing was performed using four-point fully articulated fixtures for samples measuring 2 × 2 × 50 mm3 across a 40 mm span. Fiber length correlated with improved mechanical properties for flexural strength, modulus, yield strength, strain, work of fracture, and strain energy release, p < 0.001. In addition, sample fracture depth significantly decreased with increasing fiber lengths, p < 0.00001. All mechanical properties correlated significantly as predictors for fracture failure, p < 0.000001, and as estimators for each other, p < 0.0001. The stress-transfer micromechanics for fiber length were improved upon for strength by including a simple correction factor to account for loss of fiber volume percent related to cracks deflecting around debonded fiber ends. In turn, the elastic property of modulus was shown to exhibit a tendency to follow stress-transfer micromechanics.

18.
Int SAMPE Symp Exhib ; 47: 380-394, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-29200613

RESUMO

The objective was to validate strength improvements by incorporating chopped fiber into commercial particulate filled visible-light cured dental pastes. Photocurable resin preimpregnated 3-mm high purity quartz fibers were blended into two universal commercial composites, 3M Corp. Z100 and Kerr Corp. XRV at 35 wt% fiber. Four groups, consisting of the Z100 and XRV controls, along with Z100 and XRV both containing fibers, were prepared in a mold 2×2×25-mm then cured at equivalent irradiation intensities monitored by a Demetron Radiometer. Evaluation was accomplished on ten specimens from the four different categories according to ASTM Standard C 1161-94 configuration-A utilizing a fully-articulated four-point bend fixture and 20-mm span. Five samples out of each group were further assessed using a modified Izod Plastic Impact Tester per ASTM D 256-00. Both highly strengthened fiber reinforced composites attained a marginal error of uncertainty for statistical significance over the commercial controls (p=0.001 AVOVA posthoc Newman-Keuls) with maximum bending stress, flexural modulus, work of fracture and Izod impact toughness. From the results, it can be concluded that photocured chopped fiber reinforced composites will produce improvements over particulate filled compounds that can be considered breakthrough.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...