Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ultramicroscopy ; 240: 113580, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35908324

RESUMO

We propose a linear imaging theory for differential phase contrast under the weak-phase-weak-amplitude object approximation. Contrast transfer functions are defined for thin and thick weak objects, and they successfully describe several imaging characteristics of differential phase contrast. We discuss the defocus dependence of the contrast for several examples: atomic resolution, a p-n junction, a heterointerface, and grain boundaries. Understanding the imaging characteristics helps in adjusting aberrations in DPC STEM.

2.
Sci Adv ; 8(11): eabn0681, 2022 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35302847

RESUMO

The mechanical properties of crystals are controlled by the translational symmetry of their structures. But for glasses with a disordered structure, the link between the symmetry of local particle arrangements and stability is not well established. In this contribution, we provide experimental verification that the centrosymmetry of nearest-neighbor polyhedra in a glass strongly correlates with the local mechanical stability. We examine the distribution of local stability and local centrosymmetry in a glass during aging and deformation using microbeam x-ray scattering. These measurements reveal the underlying relationship between particle-level structure and larger-scale behavior and demonstrate that spatially connected, coordinated local transformations to lower symmetry structures are fundamental to these phenomena. While glassy structures lack obvious global symmetry breaking, local structural symmetry is a critical factor in predicting stability.

3.
Small ; 16(24): e2000828, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32383542

RESUMO

How the structure of disordered porous carbons evolves during their activation is particularly poorly understood. This problem endures primarily because of a lack of high-resolution 3D techniques for the characterization of amorphous and highly disordered structure. To address this, the measurement of the 3D pair-angle distribution function using nanodiffraction patterns from high-energy electrons is demonstrated. These rich multiatom correlations are measured for a disordered carbon and they clearly show the structural evolution during activation. They provide previously inaccessible bond-angle information and direct evidence for the presence of ring and adatom defects. An increase in the short-range order and the number of fivefold ring defects with activation are observed, indicating stress relaxation by increasing curvature. These observations support models of disordered porous carbons based on curved graphene networks and explain how large amounts of free volume can be created with surprisingly small changes in the average ratios of tetrahedral to graphitic bonding.

4.
Opt Lett ; 43(5): 975-978, 2018 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-29489759

RESUMO

We obtain exact polynomial solutions for two-dimensional coherent complex scalar fields propagating through arbitrary aberrated shift-invariant linear imaging systems. These solutions are used to model nodal-line dynamics of coherent fields output by such systems.

5.
Phys Rev Lett ; 119(17): 174801, 2017 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-29219431

RESUMO

We demonstrate experimentally an efficient electron axicon lens using a magnetic vortex. We show that naturally occurring magnetic vortices with circular magnetic moment distributions in a soft-magnetic thin film create conical phase shifts for fast electrons. Such radially symmetric linear phase ramps are equivalent to ideal light optical axicons. We apply this lens to generate efficient nondiffracting electron Bessel beams, which we observe experimentally in through-focus Lorentz images as well as in propagated off-axis electron holograms. This highlights the potential for using magnetic nanostructures as highly efficient and flexible phase plates for crafting desired electron beam shapes.

6.
Proc Natl Acad Sci U S A ; 114(39): 10344-10349, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28904094

RESUMO

Local structure and symmetry are keys to understanding how a material is formed and the properties it subsequently exhibits. This applies to both crystals and amorphous and glassy materials. In the case of amorphous materials, strong links between processing and history, structure and properties have yet to be made because measuring amorphous structure remains a significant challenge. Here, we demonstrate a method to quantify proportions of the bond-orientational order of nearest neighbor clusters [Steinhardt, et al. (1983) Phys Rev B 28:784-805] in colloidal packings by statistically analyzing the angular correlations in an ensemble of scanning transmission microbeam small-angle X-ray scattering (µSAXS) patterns. We show that local order can be modulated by tuning the potential between monodisperse, spherical colloidal silica particles using salt and surfactant additives and that more pronounced order is obtained by centrifugation than sedimentation. The order in the centrifuged glasses reflects the ground state order in the dispersion at lower packing fractions. This diffraction-based method can be applied to amorphous systems across decades in length scale to connect structure to behavior in disordered systems with a range of particle interactions.

7.
J Comput Chem ; 38(17): 1547-1551, 2017 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-28394015

RESUMO

Reverse Monte Carlo (RMC) simulations were performed to investigate the effectiveness of any combination of five experimentally motivated constraints on the reproduction of a test case, a ternary ab initio model. It was found that low energy structures fitting a variety of constraints commonly used in the RMC methodology could still provide an incorrect description of the chemical structural unit populations in multi-elemental systems. It is shown that the use of an elemental bond type constraint is an effective way to avoid this. © 2017 Wiley Periodicals, Inc.

8.
Opt Express ; 24(21): 24435-24450, 2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-27828172

RESUMO

The detection, localisation and characterisation of stationary and singular points in the phase of an X-ray wavefield is a challenge, particularly given a time-evolving field. In this paper, the associated difficulties are met by the single-grid, single-exposure X-ray phase contrast imaging technique, enabling direct measurement of phase maxima, minima, saddle points and vortices, in both slowly varying fields and as a means to visualise weakly-attenuating samples that introduce detailed phase variations to the X-ray wavefield. We examine how these high-resolution vector measurements can be visualised, using branch cuts in the phase gradient angle to characterise phase features. The phase gradient angle is proposed as a useful modality for the localisation and tracking of sample features and the magnitude of the phase gradient for improved visualization of samples in projection, capturing edges and bulk structure while avoiding a directional bias. In addition, we describe an advanced two-stage approach to single-grid phase retrieval.

9.
Oxf Med Case Reports ; 2016(5): 109-12, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-27168940

RESUMO

HIV infection can cause multiple deleterious effects on the cardiovascular system. Emerging evidence has supported a direct association between HIV infection and accelerated atherosclerosis. The mechanism for atherosclerosis in HIV-positive patients is multifactorial, an interplay between conventional risk factors, HIV itself and highly active antiretroviral therapy. The case described is a 29-year-old man with HIV, non-adherent to antiretroviral therapy and with few cardiovascular risk factors, who presented with chest pain and non-ST elevation myocardial infarction. Cardiac catheterization revealed multiple coronary artery aneurysms in the left main coronary artery and the right coronary artery. Aneurysmal formation may develop from vasculitis, HIV itself, accelerated atherosclerosis, congenital formation or medications (e.g. protease inhibitors). The researchers provide a review of coronary artery disease, aneurysmal formation and vasculitic processes in the context of HIV. As this clinical entity becomes more apparent, alternative therapeutic options may need to be explored.

10.
Opt Express ; 24(3): 2259-72, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26906802

RESUMO

We have developed a differential form of singularimetry, which utilizes phase vortices or intensity gradient singularities as topological fiducial markers in a structured illumination context. This approach analytically measures phase gradients imparted by refracting specimens, yielding quantitative information that is both local and deterministic. We have quantified our phase gradient experiments to demonstrate that lattices of wave field singularities can be used to detect subtle phase gradients imparted by a spherical specimen and fiber optic cylinders.

11.
Acta Crystallogr A Found Adv ; 71(Pt 5): 473-82, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26317191

RESUMO

The interpretation of angular symmetries in electron nanodiffraction patterns from thin amorphous specimens is examined. It is found that in general there are odd symmetries in experimental electron nanodiffraction patterns. Using simulation, it is demonstrated that this effect can be attributed to dynamical scattering, rather than other divergences from the ideal experimental conditions such as probe-forming lens aberrations and camera noise. The departure of opposing diffracted intensities from Friedel's law in the phase grating formalism is calculated using a general structure factor for disordered materials. On the basis of this, a simple correction procedure is suggested to recover the kinematical angular symmetries, and thus readily interpretable information that reflects the symmetries of the original projected object. This correction is numerically tested using both the phase object and multislice calculations, and is demonstrated to fully recover all the kinematical diffracted symmetries from a simulated atomic model of a metallic glass.

12.
J Phys Chem A ; 119(24): 6421-7, 2015 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-25984749

RESUMO

Ab initio models of Ge(x)As10Se(90-x), and Ge(x)Sb10Se(90-x) glasses are constructed, and their bonding environments are characterized and compared against each other and to recent experimental studies of equivalent glasses at the same stoichiometry and density. A minimum in the linear refractive index is found to correlate with a maximum in the number of length-one, predominantly Se, atomic chains for both glass types. The threshold behavior difference between GeAsSe and GeSbSe is shown to be due to the appearance of As-As-Se2 structural units beyond the MCN = 2.67 threshold in the GeAsSe glasses.

13.
Microsc Microanal ; 20(1): 50-4, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24284266

RESUMO

High-resolution radial distribution functions of as-implanted and thermally relaxed amorphous silicon created by ion implantation were measured using tilted-illumination selected area electron diffraction at room temperature. The diffracted intensities were measured out to a maximum scattering vector 2 sin(θ)/λ of 3.3-3.7 Å-1. The volume-averaged pair-correlation statistics of as-implanted and relaxed ion-implanted amorphous silicon are virtually indistinguishable with coordination numbers of 3.7 ± 0.3 and 3.9 ± 0.3 (for neighbors closer than 3 Å) and average bond angles of 109 ± 0.5° and 110 ± 0.6°, respectively. The atomic rearrangements in ion-implanted amorphous silicon due to a low temperature anneal are subtle.

14.
Acta Crystallogr A ; 68(Pt 5): 547-60, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22893238

RESUMO

The generalized multicomponent short-range order (GM-SRO) parameter has been adapted for the characterization of short-range order within the highly chemically and spatially resolved three-dimensional atomistic images provided by the microscopy technique of atom-probe tomography (APT). It is demonstrated that, despite the experimental limitations of APT, in many cases the GM-SRO results derived from APT data can provide a highly representative description of the atomic scale chemical arrangement in the original specimen. Further, based upon a target set of the GM-SRO parameters, measured from APT experiments, a Monte Carlo algorithm was utilized to simulate statistically equivalent atomistic systems which, unlike APT data, are complete and lattice based. The simulations replicate solute structures that are statistically consistent with other correlation measures such as solute cluster distributions, enable more quantitative characterization of nanostructural phenomena in the original specimen and, significantly, can be incorporated directly into other models and simulations.

15.
Opt Express ; 20(13): 13947-57, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22714460

RESUMO

A new phase-measurement technique is proposed, which utilizes a three-beam interferometer. Three-wave interference in the interferometer generates a uniform lattice of optical vortices, which is distorted by the presence of an object inserted in one arm of the interferometer. The transverse displacement of the vortices is proportional to the phase shift in the object wave. Tracking the vortices permits the phase of the object to be reconstructed. We demonstrate the method experimentally using a simple lens and a more complex object, namely the wing of a common house fly. Since the technique is implemented in real space, it is capable of reconstructing the phase locally.


Assuntos
Interferometria/instrumentação , Refratometria/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...