Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; 20(24): e2307200, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38197540

RESUMO

Uniform lithium deposition is essential to hinder dendritic growth. Achieving this demands even seed material distribution across the electrode, posing challenges in correlating the electrode's surface structure with the uniformity of seed material distribution. In this study, the effect of periodic surface and facet orientation on seed distribution is investigated using a model system consisting of a wrinkled copper (Cu)/graphene structure with a [100] facet orientation. A new methodology is developed for uniformly distributed silver (Ag) nanoparticles over a large area by controlling the surface features of Cu substrates. The regularly arranged Ag nanoparticles, with a diameter of 26.4 nm, are fabricated by controlling the Cu surface condition as [100]-oriented wrinkled Cu. The wrinkled Cu guides a deposition site for spherical Ag nanoparticles, the [100] facet determines the Ag morphology, and the presence of graphene leads to spacings of Ag seeds. This patterned surface and high lithiophilicity, with homogeneously distributed Ag nanoparticles, lead to uniform Li+ flux and reduced nucleation energy barrier, resulting in excellent battery performance. The electrochemical measurements exhibit improved cyclic stability over 260 cycles at 0.5 mA cm-2 and 100 cycles at 1.0 mA cm-2 and enhanced kinetics even under a high current density of 5.0 mA cm-2.

2.
Phys Rev Lett ; 131(23): 238003, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38134804

RESUMO

We find that ion creation and destruction dominate the behavior of electrochemical reaction barriers, through grand-canonical electronic structure calculations of proton deposition on transition metal surfaces. We show that barriers respond to potential in a nonlinear manner and trace this to the continuous degree of electron transfer as an ion is created or destroyed. This explains both Marcus-like curvature and Hammond-like shifts. Across materials, we find the barrier energy to be driven primarily by the charge presented on the surface, which, in turn, is dictated by the native work function, a fundamentally different driving force than in nonelectrochemical systems.

3.
J Chem Theory Comput ; 19(18): 6452-6460, 2023 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-37682532

RESUMO

The atomic vibrations of a solid surface can play a significant role in the reactions of surface-bound molecules, as well as their adsorption and desorption. Relevant phonon modes can involve the collective motion of atoms over a wide array of length scales. In this paper, we demonstrate how the generalized Langevin equation can be utilized to describe these collective motions weighted by their coupling to individual sites. Our approach builds upon the generalized Langevin oscillator (GLO) model originally developed by Tully. We extend the GLO by deriving parameters from atomistic simulation data. We apply this approach to study the memory kernel of a model platinum surface and demonstrate that the memory kernel has a bimodal form due to coupling to both low-energy acoustic modes and high-energy modes near the Debye frequency. The same bimodal form was observed across a wide variety of solids of different elemental compositions, surface structures, and solvation states. By studying how these dominant modes depend on the simulation size, we argue that the acoustic modes are frozen in the limit of macroscopic lattices. By simulating periodically replicated slabs of various sizes, we quantify the influence of phonon confinement effects in the memory kernel and their concomitant effect on simulated sticking coefficients.

4.
J Chem Phys ; 157(18): 180902, 2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36379805

RESUMO

The ability to simulate electrochemical reactions from first-principles has advanced significantly in recent years. Here, we discuss the atomistic interpretation of electrochemistry at three scales: from the electronic structure to elementary processes to constant-potential reactions. At each scale, we highlight the importance of the grand-canonical nature of the process and show that the grand-canonical energy is the natural thermodynamic state variable, which has the additional benefit of simplifying calculations. We show that atomic forces are the derivative of the grand-potential energy when the potential is fixed. We further examine the meaning of potential at the atomic scale and its link to the chemical potential and discuss the link between charge transfer and potential in several situations.

5.
J Chem Phys ; 156(6): 064104, 2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35168344

RESUMO

A challenge of atomistic machine-learning (ML) methods is ensuring that the training data are suitable for the system being simulated, which is particularly challenging for systems with large numbers of atoms. Most atomistic ML approaches rely on the nearsightedness principle ("all chemistry is local"), using information about the position of an atom's neighbors to predict a per-atom energy. In this work, we develop a framework that exploits the nearsighted nature of ML models to systematically produce an appropriate training set for large structures. We use a per-atom uncertainty estimate to identify the most uncertain atoms and extract chunks centered around these atoms. It is crucial that these small chunks are both large enough to satisfy the ML's nearsighted principle (that is, filling the cutoff radius) and are large enough to be converged with respect to the electronic structure calculation. We present data indicating when the electronic structure calculations are converged with respect to the structure size, which fundamentally limits the accuracy of any nearsighted ML calculator. These new atomic chunks are calculated in electronic structures, and crucially, only a single force-that of the central atom-is added to the growing training set, preventing the noisy and irrelevant information from the piece's boundary from interfering with ML training. The resulting ML potentials are robust, despite requiring single-point calculations on only small reference structures and never seeing large training structures. We demonstrated our approach via structure optimization of a 260-atom structure and extended the approach to clusters with up to 1415 atoms.

6.
J Theor Biol ; 528: 110839, 2021 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-34314731

RESUMO

The fundamental models of epidemiology describe the progression of an infectious disease through a population using compartmentalized differential equations, but typically do not incorporate population-level heterogeneity in infection susceptibility. Here we combine a generalized analytical framework of contagion with computational models of epidemic dynamics to show that variation strongly influences the rate of infection, while the infection process simultaneously sculpts the susceptibility distribution. These joint dynamics influence the force of infection and are, in turn, influenced by the shape of the initial variability. We find that certain susceptibility distributions (the exponential and the gamma) are unchanged through the course of the outbreak, and lead naturally to power-law behavior in the force of infection; other distributions are often sculpted towards these "eigen-distributions" through the process of contagion. The power-law behavior fundamentally alters predictions of the long-term infection rate, and suggests that first-order epidemic models that are parameterized in the exponential-like phase may systematically and significantly over-estimate the final severity of the outbreak. In summary, our study suggests the need to examine the shape of susceptibility in natural populations as part of efforts to improve prediction models and to prioritize interventions that leverage heterogeneity to mitigate against spread.


Assuntos
Epidemias , Surtos de Doenças , Modelos Biológicos
7.
J Am Chem Soc ; 142(45): 19209-19216, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33124818

RESUMO

Tuning the performance of nanoparticle (NP) catalysts by controlling the NP surface strain has evolved as an important strategy to optimize NP catalysis in many energy conversion reactions. Here, we present our new study on using an eigenforce model to predict and experiments to verify the strain-induced catalysis enhancement of the oxygen reduction reaction (ORR) in the presence of L10-CoMPt NPs (M = Mn, Fe, Ni, Cu, Ni). The eigenforce model allowed us to predict anisotropic (that is, two-dimensional) strain levels on distorted Pt(111) surfaces. Experimentally, by preparing a series of 5 nm L10-CoMPt NPs, we could push the ORR catalytic activity of these NPs toward the optimum region of the theoretical two-dimensional volcano plot predicted for L10-CoMPt. The best ORR catalyst in the alloy NP series we studied is L10-CoNiPt, which has a mass activity of 3.1 A/mgPt and a specific activity of 9.3 mA/cm2 at room temperature with only 15.9% loss of mass activity after 30 000 cycles at 60 °C in 0.1 M HClO4.


Assuntos
Nanopartículas Metálicas/química , Oxigênio/química , Ligas/química , Catálise , Teoria da Densidade Funcional , Oxirredução
8.
J Am Chem Soc ; 142(27): 11829-11834, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32574495

RESUMO

Many electrochemical processes are governed by the transfer of protons to the surface, which can be coupled with electron transfer; this electron transfer is in general non-integer and unknown a priori, but is required to hold the potential constant. In this study, we employ a combination of surface spectroscopic techniques and grand-canonical electronic-structure calculations in order to rigorously understand the thermodynamics of this process. Specifically, we explore the protonation/deprotonation of 4-mercaptobenzoic acid as a function of the applied potential. Using grand-canonical electronic-structure calculations, we directly infer the coupled electron transfer, which we find to be on the order of 0.1 electron per proton; experimentally, we also access this quantity via the potential-dependence of the pKa. We show a striking agreement between the potential-dependence of the measured pKa and that calculated with electronic-structure calculations. We further employ a simple electrostatics-based model to show that this slope can equivalently be interpreted to provide information on the degree of coupled electron transfer or the potential change at the point of the charged species.

9.
J Chem Theory Comput ; 15(11): 5787-5793, 2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31600078

RESUMO

We present a modified nudged elastic band routine that can reduce the number of force calls by more than 50% for bands with nonuniform convergence. The method, which we call "dyNEB", dynamically and selectively optimizes images on the basis of the perpendicular PES-derived forces and parallel spring forces acting on that region of the band. The convergence criteria are scaled to focus on the region of interest, i.e., the saddle point, while maintaining continuity of the band and avoiding truncation. We show that this method works well for solid state reaction barriers-nonelectrochemical in general and electrochemical in particular-and that the number of force calls can be significantly reduced without loss of resolution at the saddle point.

10.
Nanoscale ; 11(25): 12075-12079, 2019 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-31215587

RESUMO

We prepared micrometer long Cu nanowires (NWs) of 25 and 50 nm diameters and studied their electrocatalysis for electrochemical reduction of CO/CO2 in 0.1 M KHCO3 at room temperature. The 50 nm NWs showed better selectivity than the 25 nm NWs, and catalyzed CO reduction to C2-hydrocarbons (C2H4 + C2H6) with a combined faradaic efficiency (FE) of 60% (C2H4 FE of 35% and mass activity of 4.25 A g-1 Cu) at -1.1 V (vs. reversible hydrogen electrode). The NW-catalyzed CO2 reduction is less efficient due to the extra CO2 to CO step required for the formation of C2-hydrocarbons. This experimental evidence combined with DFT calculations suggests that CO is an important intermediate and NWs provide a large Cu(100) surface for *CO hydrogenation (to *CHO) and *CO-*CHO coupling, leading to more selective reduction of CO than CO2 towards C2-hydrocarbons.

11.
J Chem Phys ; 150(4): 041704, 2019 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-30709250

RESUMO

Proton exchange membrane fuel cells (PEMFCs) are promising candidates for alternate energy conversion devices owing to their various advantages including high efficiency, reliability, and environmental friendliness. The performance of PEMFCs is fundamentally limited by the sluggish kinetics of the oxygen reduction reaction (ORR) at the cathode. Various studies have addressed myriads of Pt-based alloys as potential catalysts for ORR. However, most of these studies only focus on the cubic-structured Pt-based alloys which require further improvements especially in terms of stability and required loading. In this work, we perform first-principle density functional theory calculations to explore Fe and Co alloys of Pt in a different face centered tetragonal (L10) geometry as potential catalysts for ORR. The work focuses on understanding the reaction mechanism of ORR by both dissociative and associative mechanisms on L10-FePt/Pt(111) and L10-CoPt/Pt(111) surfaces. The binding pattern of each reaction intermediate is studied along with the complete reaction free energy landscape as a function of Pt overlayers. The L10-FePt/Pt(111) and L10-CoPt/Pt(111) surfaces show higher calculated surface activity for ORR as compared to the native fcc Pt(111) surface. The decrease in the required overpotential (η) for the alloys with respect to the unstrained Pt(111) surface is found to be in the range (0.04 V-0.25 V) assuming the dissociative mechanism and (0.02 V-0.10 V) assuming the associative mechanism, where the variation depends on the thickness of Pt overlayers. We further correlate the binding behavior of the reaction intermediates to the applied biaxial strain on the Pt(111) surface with the help of a mechanical eigenforce model. The eigenforce model gives a (semi-) quantitative prediction of the binding energies of the ORR intermediates under applied biaxial strain. The numerical values of the limiting potential (UL) obtained from the eigenforce model are found to be very close to ones obtained from electronic structure calculations (less than 0.1 V difference). The eigenforce model is further used to predict the ideal equi-biaxial strain range required on Pt(111) surfaces for optimum ORR activity.

12.
J Chem Phys ; 148(24): 241740, 2018 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-29960374

RESUMO

Hybrid quantum-mechanics/molecular-mechanics (QM/MM) simulations are popular tools for the simulation of extended atomistic systems, in which the atoms in a core region of interest are treated with a QM calculator and the surrounding atoms are treated with an empirical potential. Recently, a number of atomistic machine-learning (ML) tools have emerged that provide functional forms capable of reproducing the output of more expensive electronic-structure calculations; such ML tools are intriguing candidates for the MM calculator in QM/MM schemes. Here, we suggest that these ML potentials provide several natural advantages when employed in such a scheme. In particular, they may allow for newer, simpler QM/MM frameworks while also avoiding the need for extensive training sets to produce the ML potential. The drawbacks of employing ML potentials in QM/MM schemes are also outlined, which are primarily based on the added complexity to the algorithm of training and re-training ML models. Finally, two simple illustrative examples are provided which show the power of adding a retraining step to such "QM/ML" algorithms.

14.
Phys Chem Chem Phys ; 19(18): 10978-10985, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28418054

RESUMO

Machine-learning regression has been demonstrated to precisely emulate the potential energy and forces that are output from more expensive electronic-structure calculations. However, to predict new regions of the potential energy surface, an assessment must be made of the credibility of the predictions. In this perspective, we address the types of errors that might arise in atomistic machine learning, the unique aspects of atomistic simulations that make machine-learning challenging, and highlight how uncertainty analysis can be used to assess the validity of machine-learning predictions. We suggest this will allow researchers to more fully use machine learning for the routine acceleration of large, high-accuracy, or extended-time simulations. In our demonstrations, we use a bootstrap ensemble of neural network-based calculators, and show that the width of the ensemble can provide an estimate of the uncertainty when the width is comparable to that in the training data. Intriguingly, we also show that the uncertainty can be localized to specific atoms in the simulation, which may offer hints for the generation of training data to strategically improve the machine-learned representation.

15.
J Chem Phys ; 145(7): 074106, 2016 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-27544086

RESUMO

In atomistic simulations, the location of the saddle point on the potential-energy surface (PES) gives important information on transitions between local minima, for example, via transition-state theory. However, the search for saddle points often involves hundreds or thousands of ab initio force calls, which are typically all done at full accuracy. This results in the vast majority of the computational effort being spent calculating the electronic structure of states not important to the researcher, and very little time performing the calculation of the saddle point state itself. In this work, we describe how machine learning (ML) can reduce the number of intermediate ab initio calculations needed to locate saddle points. Since machine-learning models can learn from, and thus mimic, atomistic simulations, the saddle-point search can be conducted rapidly in the machine-learning representation. The saddle-point prediction can then be verified by an ab initio calculation; if it is incorrect, this strategically has identified regions of the PES where the machine-learning representation has insufficient training data. When these training data are used to improve the machine-learning model, the estimates greatly improve. This approach can be systematized, and in two simple example problems we demonstrate a dramatic reduction in the number of ab initio force calls. We expect that this approach and future refinements will greatly accelerate searches for saddle points, as well as other searches on the potential energy surface, as machine-learning methods see greater adoption by the atomistics community.

16.
Angew Chem Int Ed Engl ; 55(21): 6175-81, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27079940

RESUMO

Understanding the role of elastic strain in modifying catalytic reaction rates is crucial for catalyst design, but experimentally, this effect is often coupled with a ligand effect. To isolate the strain effect, we have investigated the influence of externally applied elastic strain on the catalytic activity of metal films in the hydrogen evolution reaction (HER). We show that elastic strain tunes the catalytic activity in a controlled and predictable way. Both theory and experiment show strain controls reactivity in a controlled manner consistent with the qualitative predictions of the HER volcano plot and the d-band theory: Ni and Pt's activities were accelerated by compression, while Cu's activity was accelerated by tension. By isolating the elastic strain effect from the ligand effect, this study provides a greater insight into the role of elastic strain in controlling electrocatalytic activity.

17.
Phys Chem Chem Phys ; 17(6): 4505-15, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25582895

RESUMO

The state of the electrocatalyst surface-including the oxidation state of the catalyst and the presence of spectator species-is investigated on Cu surfaces with density functional theory in order to understand predicted ramifications on the selectivity and efficiency of CO2 reduction. We examined the presence of oxygen-based species, including the fully oxidized Cu2O surface, the partially oxidized Cu(110)-(2 × 1)O surface, and the presence of OH spectators. The relative oxygen binding strength among these surfaces can help to explain the experimentally observed selectivity change between CH4 and CH3OH on these electrodes; this suggests that the oxygen-binding strength may be a key parameter which predicts the thermodynamically preferred selectivity for pathways proceeding through a methoxy (CH3O) intermediate. This study shows the importance of the local surface environment in the product selectivity of electrocatalysis, and suggests a simple descriptor that can aid in the design of improved electrocatalytic materials.

18.
Adv Energy Mater ; 5(7): 1401082, 2015 04.
Artigo em Inglês | MEDLINE | ID: mdl-26855639

RESUMO

The performance of metal oxides as redox materials is limited by their oxygen conductivity and thermochemical stability. Predicting these properties from the electronic structure can support the screening of advanced metal oxides and accelerate their development for clean energy applications. Specifically, reducible metal oxide catalysts and potential redox materials for the solar-thermochemical splitting of CO2 and H2O via an isothermal redox cycle are examined. A volcano-type correlation is developed from available experimental data and density functional theory. It is found that the energy of the oxygen-vacancy formation at the most stable surfaces of TiO2, Ti2O3, Cu2O, ZnO, ZrO2, MoO3, Ag2O, CeO2, yttria-stabilized zirconia, and three perovskites scales with the Gibbs free energy of formation of the bulk oxides. Analogously, the experimental oxygen self-diffusion constants correlate with the transition-state energy of oxygen conduction. A simple descriptor is derived for rapid screening of oxygen-diffusion trends across a large set of metal oxide compositions. These general trends are rationalized with the electronic charge localized at the lattice oxygen and can be utilized to predict the surface activity, the free energy of complex bulk metal oxides, and their oxygen conductivity.

19.
J Am Chem Soc ; 136(46): 16132-5, 2014 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-25380393

RESUMO

In this communication, we show that ultrathin Au nanowires (NWs) with dominant edge sites on their surface are active and selective for electrochemical reduction of CO2 to CO. We first develop a facile seed-mediated growth method to synthesize these ultrathin (2 nm wide) Au NWs in high yield (95%) by reducing HAuCl4 in the presence of 2 nm Au nanoparticles (NPs). These NWs catalyze CO2 reduction to CO in aqueous 0.5 M KHCO3 at an onset potential of -0.2 V (vs reversible hydrogen electrode). At -0.35 V, the reduction Faradaic efficiency (FE) reaches 94% (mass activity 1.84 A/g Au) and stays at this level for 6 h without any noticeable activity change. Density functional theory (DFT) calculations suggest that the excellent catalytic performance of these Au NWs is attributed both to their high mass density of reactive edge sites (≥16%) and to the weak CO binding on these sites. These ultrathin Au NWs are the most efficient nanocatalyst ever reported for electrochemical reduction of CO2 to CO.

20.
J Emerg Trauma Shock ; 7(1): 38-40, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24550629

RESUMO

Bullet embolism is a rare phenomenon following gunshot injuries. We present a case of a 25-year-old male who sustained a gunshot wound to his left globe with the bullet initially lodged in his right transverse sinus. The bullet ultimately embolized to a left lower lobe pulmonary artery resulting in a pulmonary infarct. A discussion of select prior cases, pathophysiology, and management strategies follows.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...