Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biofilm ; 2: 100032, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33447817

RESUMO

Wounds complicated by biofilms challenge even the best clinical care and can delay a return to duty for service members. A major component of treatment in wounded warriors includes infected wound management. Yet, all antibiotic therapy options have been optimized against planktonic bacteria, leaving an important gap in biofilm-related wound care. We tested the efficacy of a unique compound (CZ-01179) specifically synthesized to eradicate biofilms. CZ-01179 was formulated as the active agent in a hydrogel, and tested in vitro and in vivo in a pig excision wound model for its ability to treat and prevent biofilm-related wound infection caused by Acinetobacter baumannii. Data indicated that compared to a clinical standard-silver sulfadiazine-CZ-01179 was much more effective at eradicating biofilms of A. baumannii in vitro and up to 6 days faster at eradicating biofilms in vivo. CZ-01179 belongs to a broader class of newly-synthesized antibiofilm agents (referred to as CZ compounds) with reduced risk of resistance development, specific efficacy against biofilms, and promising formulation potential for clinical applications. Given its broad spectrum and biofilm-specific nature, CZ-01179 gel may be a promising agent to increase the pipeline of products to treat and prevent biofilm-related wound infections.

2.
PLoS One ; 14(3): e0206774, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30870411

RESUMO

The CDC biofilm reactor is a robust culture system with high reproducibility in which biofilms can be grown for a wide variety of analyses. Multiple material types are available as growth substrates, yet data from biofilms grown on biologically relevant materials is scarce, particularly for antibiotic efficacy against differentially supported biofilms. In this study, CDC reactor holders were modified to allow growth of biofilms on collagen, a biologically relevant substrate. Susceptibility to multiple antibiotics was compared between biofilms of varying species grown on collagen versus standard polycarbonate coupons. Data indicated that in 13/18 instances, biofilms on polycarbonate were more susceptible to antibiotics than those on collagen, suggesting that when grown on a complex substrate, biofilms may be more tolerant to antibiotics. These outcomes may influence the translatability of antibiotic susceptibility profiles that have been collected for biofilms on hard plastic materials. Data may also help to advance information on antibiotic susceptibility testing of biofilms grown on biologically relevant materials for future in vitro and in vivo applications.


Assuntos
Antibacterianos/farmacologia , Bactérias/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Reatores Biológicos/microbiologia , Colágeno/metabolismo , Cimento de Policarboxilato/metabolismo , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Colágeno/química , Cimento de Policarboxilato/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...