Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 10(10)2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34685856

RESUMO

Mulch from cover crops can effectively suppress weeds in organic corn (Zea mays L.) and soybean (Glycine max L.) as part of cover crop-based rotational no-till systems, but little is known about the feasibility of using mulch to suppress weeds in organic winter small grain crops. A field experiment was conducted in central NY, USA, to quantify winter wheat (Triticum aestivum L.) seedling emergence, weed and crop biomass production, and wheat grain yield across a gradient of mulch biomass. Winter wheat seedling density showed an asymptotic relationship with mulch biomass, with no effect at low rates and a gradual decrease from moderate to high rates of mulch. Selective suppression of weed biomass but not wheat biomass was observed, and wheat grain yield was not reduced at the highest level of mulch (9000 kg ha-1). Results indicate that organic winter wheat can be no-till planted in systems that use mulch for weed suppression. Future research should explore wheat tolerance to mulch under different conditions, and the potential of no-till planting wheat directly into rolled-crimped cover crops.

2.
PLoS One ; 15(5): e0231840, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32379773

RESUMO

Production systems that feature temporal and spatial integration of crop and livestock enterprises, also known as integrated crop-livestock systems (ICLS), have the potential to intensify production on cultivated lands and foster resilience to the effects of climate change without proportional increases in environmental impacts. Yet, crop production outcomes following livestock grazing across environments and management scenarios remain uncertain and a potential barrier to adoption, as producers worry about the effects of livestock activity on the agronomic quality of their land. To determine likely production outcomes across ICLS and to identify the most important moderating variables governing those outcomes, we performed a meta-analysis of 66 studies comparing crop yields in ICLS to yields in unintegrated controls across 3 continents, 12 crops, and 4 livestock species. We found that annual cash crops in ICLS averaged similar yields (-7% to +2%) to crops in comparable unintegrated systems. The exception was dual-purpose crops (crops managed simultaneously for grazing and grain production), which yielded 20% less on average than single-purpose crops in the studies examined. When dual-purpose cropping systems were excluded from the analysis, crops in ICLS yielded more than in unintegrated systems in loamy soils and achieved equal yields in most other settings, suggesting that areas of intermediate soil texture may represent a "sweet-spot" for ICLS implementation. This meta-analysis represents the first quantitative synthesis of the crop production outcomes of ICLS and demonstrates the need for further investigation into the conditions and management scenarios under which ICLS can be successfully implemented.


Assuntos
Agricultura/métodos , Produção Agrícola/economia , Produtos Agrícolas/economia , Gado , Agricultura/economia , Animais , Bovinos , Mudança Climática , Secas , Meio Ambiente , Estações do Ano , Ovinos , Solo
3.
Sci Rep ; 9(1): 12283, 2019 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-31439927

RESUMO

Adaptive management practices that maximize yields while improving yield resilience are required in the face of resource variability and climate change. Ecological intensification such as organic farming and cover cropping are lauded in some studies for fostering yield resilience, but subject to criticism in others for their low productivity. We implemented a quantitative framework to assess yield resilience, emphasizing four aspects of yield dynamics: yield, yield stability, yield resistance (i.e., the ability of systems to avoid crop failure under stressful growing conditions), and maximum yield potential. We compared the resilience of maize-tomato rotation systems after 24 years of irrigated organic, cover cropped, and conventional management in a Mediterranean climate, and identified crop-specific resilience responses of tomato and maize to three management systems. Organic management maintained tomato yields comparable to those under conventional management, while increasing yield stability and resistance. However, organic and cover cropped system resulted in 36.1% and 35.8% lower maize yields and reduced yield stability and resistance than the conventional system. Our analyses suggest that investments in ecological intensification approaches could potentially contribute to long-term yield resilience, however, these approaches need to be tailored for individual crops and systems to maximize their benefits, rather than employing one-size-fits-all approaches.


Assuntos
Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Agricultura Orgânica , Solanum lycopersicum/crescimento & desenvolvimento , Zea mays/crescimento & desenvolvimento , Região do Mediterrâneo
4.
Am J Bot ; 99(9): 1562-71, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22922398

RESUMO

PREMISE OF THE STUDY: In a large reciprocal transplant experiment, Eriophorum vaginatum tussocks transplanted along a latitudinal gradient in Alaska's interior exhibited genetic differentiation and phenotypic plasticity for vegetative traits. Using the same tussocks 30 yr later, we used estimates of growing season temperature at each site to ask whether there was a climatic cline for stomatal density, size, and conductance. METHODS: We created impressions of the abaxial leaf surfaces of the transplanted individuals for viewing under a microscope and measured stomatal density (SD) and length (SL) for 224 individuals. We used SD and SL to estimate stomatal conductance (C). Separate one-way analyses of variance were performed to quantify the effect of population genetic differences and latitudinal environmental variation on stomatal characteristics. KEY RESULTS: Our data suggest that stomatal size was influenced by both genetics and environment and that plasticity for stomatal density produced highest densities at the coolest sites. Stomatal conductance increased with decreasing temperature of site from which the populations originated. CONCLUSIONS: Our results demonstrate a cline in stomatal conductance in E. vaginatum, with some ability of populations to plastically produce an appropriate phenotypic response in a new environment. Because the species is a dominant species in many arctic plant communities, its ability to produce an appropriate stomatal phenotype and to optimize water use efficiency by decreasing stomatal conductance in warmer environments could affect both community composition and total primary productivity in future, warmer climates.


Assuntos
Clima , Cyperaceae/fisiologia , Estômatos de Plantas/fisiologia , Alaska , Regiões Árticas , Cyperaceae/citologia , Geografia , Estômatos de Plantas/citologia , Porosidade , Análise de Regressão , Estações do Ano , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...