Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
3.
PLoS One ; 19(3): e0298819, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512918

RESUMO

Buprenorphine in an extended-release formulation intended for use in laboratory subjects is frequently administered to rats to provide extended analgesia without repeated handling. While levels of buprenorphine may persist in serum once extended-release buprenorphine has been introduced, exposure to opioids can cause opioid tolerance or opioid-induced hypersensitivity. This work examined the analgesic duration and efficacy of a single administration of extended-release buprenorphine intended for use in laboratory subjects in models of inflammatory pain and post-operative pain and the development of opioid tolerance in rat. After subcutaneous administration of 1 mg/kg extended-release buprenorphine, analgesic efficacy did not persist for the expected 72 hours. No changes were observed in mechanical thresholds in the hindpaws that were contralateral to the injury, suggesting a lack of centrally mediated opioid-induced hypersensitivity. To determine whether opioid tolerance arose acutely after one exposure to extended-release buprenorphine, we conducted the warm water tail flick assay; on Day 1 we administered either saline or extended-release buprenorphine (1 mg/kg) and on Day 3 we quantified the standard buprenorphine dose-response curve (0.1-3 mg/kg). Rats previously given extended-release buprenorphine displayed decreased analgesic responses after administration of standard buprenorphine as compared to the robust efficacy of standard buprenorphine in control subjects. Males appeared to show evidence of acute opioid tolerance, while females previously exposed to opioid did not demonstrate a decreased response at the doses examined. Taken together, these results suggest that opioid tolerance arises quickly in male rats after exposure to the extended-release formulation of buprenorphine. This tolerance may account for the brief period of antinociception observed.


Assuntos
Analgésicos Opioides , Buprenorfina , Humanos , Feminino , Ratos , Masculino , Animais , Analgésicos Opioides/uso terapêutico , Tolerância a Medicamentos , Analgésicos/uso terapêutico , Dor/tratamento farmacológico
4.
Front Pain Res (Lausanne) ; 4: 960389, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38028425

RESUMO

Throughout history humanity has searched for an optimal approach to the use of opioids that maximizes analgesia while minimizing side effects. This review reflects upon the conceptualization of the opioid receptor and the critical role that the pharmaceutical sciences played in its revelation. Opium-containing formulations have been delivered by various routes of administration for analgesia and other therapeutic indications for millennia. The concept of a distinct site of opium action evolved as practitioners developed innovative delivery methods, such as intravenous administration, to improve therapeutic outcomes. The introduction of morphine and synthetic opioids engendered the prevalent assumption of a common opioid receptor. Through consideration of structure-activity relationships, spatial geometry, and pharmacological differences of known ligands, the idea of multiple opioid receptors emerged. By accessing the high-affinity property of naloxone, the opioid receptor was identified in central and peripheral nervous system tissue. The endogenous opioid neuropeptides were subsequently discovered. Application of mu-, delta-, and kappa- opioid receptor-selective ligands facilitated the pharmacological characterization and distinctions between the three receptors, which were later cloned and sequenced. Opioid receptor signal transduction pathways were described and attributed to specific physiological outcomes. The crystal structures of mu, delta, kappa, and nociceptin/orphanin FQ receptors bound to receptor-selective ligands have been elucidated. Comparison of these structures reveal locations of ligand binding and engagement of signal transduction pathways. Expanding knowledge regarding the structure and actions of the opioid receptor fuels contemporary strategies for driving the activity of opioid receptors toward maximizing therapeutic and minimizing adverse outcomes.

5.
J Pharmacol Exp Ther ; 387(3): 328-336, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37770201

RESUMO

Agmatine, an endogenous polyamine, has been shown to reduce chronic pain behaviors in animal models and in patients. This reduction is due to inhibition of the GluN2B subunit of the N-methyl-D-aspartate receptor (NMDAR) in the central nervous system (CNS). The mechanism of action requires central activity, but the extent to which agmatine crosses biologic barriers such as the blood-brain barrier (BBB) and intestinal epithelium is incompletely understood. Determination of agmatine distribution is limited by analytical protocols with low sensitivity and/or inefficient preparation. This study validated a novel bioanalytical protocol using high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) for quantification of agmatine in rat biologic matrices. These protocols were then used to determine the plasma pharmacokinetics of agmatine and the extent of distribution to the CNS. Precision and accuracy of the protocol met US Food and Drug Administration (FDA) standards in surrogate matrix as well as in corrected concentrations in appropriate matrices. The protocol also adequately withstood stability and dilution conditions. Upon application of this protocol to pharmacokinetic study, intravenous agmatine showed a half-life in plasma ranging between 18.9 and 14.9 minutes. Oral administration led to a prolonged plasma half-life (74.4-117 minutes), suggesting flip-flop kinetics, with bioavailability determined to be 29%-35%. Intravenous administration led to a rapid increase in agmatine concentration in brain but a delayed distribution and lower concentrations in spinal cord. However, half-life of agmatine in both tissues is substantially longer than in plasma. These data suggest that agmatine adequately crosses biologic barriers in rat and that brain and spinal cord pharmacokinetics can be functionally distinct. SIGNIFICANCE STATEMENT: Agmatine has been shown to be an effective nonopioid therapy for chronic pain, a significantly unmet medical necessity. Here, using a novel bioanalytical protocol for quantification of agmatine, we present the plasma pharmacokinetics and the first report of agmatine oral bioavailability as well as variable pharmacokinetics across different central nervous system tissues. These data provide a distributional rationale for the pharmacological effects of agmatine as well as new evidence for kinetic differences between brain and spinal cord.


Assuntos
Agmatina , Produtos Biológicos , Dor Crônica , Ratos , Humanos , Animais , Agmatina/análise , Agmatina/farmacologia , Distribuição Tecidual , Espectrometria de Massas em Tandem , Medula Espinal , Encéfalo , Produtos Biológicos/farmacologia
6.
Mol Ther ; 31(4): 1123-1135, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36710491

RESUMO

Chronic pain remains a significant burden worldwide, and treatments are often limited by safety or efficacy. The decarboxylated form of L-arginine, agmatine, antagonizes N-methyl-d-aspartate receptors, inhibits nitric oxide synthase, and reverses behavioral neuroplasticity. We hypothesized that expressing the proposed synthetic enzyme for agmatine in the sensory pathway could reduce chronic pain without motor deficits. Intrathecal delivery of an adeno-associated viral (AAV) vector carrying the gene for arginine decarboxylase (ADC) prevented the development of chronic neuropathic pain as induced by spared nerve injury in mice and rats and persistently reversed established hypersensitivity 266 days post-injury. Spinal long-term potentiation was inhibited by both exogenous agmatine and AAV-human ADC (hADC) vector pre-treatment but was enhanced in rats treated with anti-agmatine immunoneutralizing antibodies. These data suggest that endogenous agmatine modulates the neuroplasticity associated with chronic pain. Development of approaches to access this inhibitory control of neuroplasticity associated with chronic pain may yield important non-opioid pain-relieving options.


Assuntos
Agmatina , Dor Crônica , Humanos , Ratos , Camundongos , Animais , Dor Crônica/terapia , Roedores/metabolismo , Agmatina/farmacologia , Receptores de N-Metil-D-Aspartato
7.
Front Pain Res (Lausanne) ; 4: 1269017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38405182

RESUMO

Agmatine, a decarboxylated form of L-arginine, prevents opioid analgesic tolerance, dependence, and self-administration when given by both central and systemic routes of administration. Endogenous agmatine has been previously detected in the central nervous system. The presence of a biochemical pathway for agmatine synthesis offers the opportunity for site-specific overexpression of the presumptive synthetic enzyme for local therapeutic effects. In the present study, we evaluated the development of opioid analgesic tolerance in ICR-CD1 mice pre-treated with either vehicle control or intrathecally delivered adeno-associated viral vectors (AAV) carrying the gene for human arginine decarboxylase (hADC). Vehicle-treated or AAV-hADC-treated mice were each further divided into two groups which received repeated delivery over three days of either saline or systemically-delivered morphine intended to induce opioid analgesic tolerance. Morphine analgesic dose-response curves were constructed in all subjects on day four using the warm water tail flick assay as the dependent measure. We observed that pre-treatment with AAV-hADC prevented the development of analgesic tolerance to morphine. Peripheral and central nervous system tissues were collected and analyzed for presence of hADC mRNA. In a similar experiment, AAV-hADC pre-treatment prevented the development of analgesic tolerance to a high dose of the opioid neuropeptide endomorphin-2. Intrathecal delivery of anti-agmatine IgG (but not normal IgG) reversed the inhibition of endomorphin-2 analgesic tolerance in AAV-hADC-treated mice. To summarize, we report here the effects of AAV-mediated gene transfer of human ADC (hADC) in models of opioid-induced analgesic tolerance. This study suggests that gene therapy may contribute to reducing opioid analgesic tolerance.

8.
J Pharmacol Exp Ther ; 380(1): 34-46, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34663676

RESUMO

Novel combinations of specific opioid agonists like loperamide and oxymorphindole targeting the µ- and δ-opioid receptors, respectively, have shown increased potency with minimized opioid-associated risks. However, whether their interaction is pharmacokinetic or pharmacodynamic in nature has not been determined. This study quantitatively determined whether these drugs have a pharmacokinetic interaction that alters systemic disposition or central nervous system (CNS) distribution. We performed intravenous and oral in vivo pharmacokinetic assessments of both drugs after discrete dosing and administration in combination to determine whether the combination had any effect on systemic pharmacokinetic parameters or CNS exposure. Drugs were administered at 5 or 10 mg/kg i.v. or 30 mg/kg orally to institute for cancer research (ICR) mice and 5 mg/kg i.v. to Friend leukemia virus strain B mice of the following genotypes: wild-type, breast cancer resistance protein (Bcrp-/- ) (Bcrp knockout), Mdr1a/b-/- [P-glycoprotein (P-gp) knockout], and Bcrp-/- Mdr1a/b-/- (triple knockout). In the combination, clearance of oxymorphindole (OMI) was reduced by approximately half, and the plasma area under the concentration-time curve (AUC) increased. Consequently, brain and spinal cord AUCs for OMI in the combination also increased proportionately. Both loperamide and OMI are P-gp substrates, but administration of the two drugs in combination does not alter efflux transport at the CNS barriers. Because OMI alone shows appreciable brain penetration but little therapeutic efficacy on its own, and because loperamide's CNS distribution is unchanged in the combination, the mechanism of action for the increased potency of the combination is most likely pharmacodynamic and most likely occurs at receptors in the peripheral nervous system. This combination has favorable characteristics for future development. SIGNIFICANCE STATEMENT: Opioids have yet to be replaced as the most effective treatments for moderate-to-severe pain and chronic pain, but their side effects are dangerous. Combinations of opioids with peripheral activity, such as loperamide and oxymorphindole, would be valuable in that they are effective at much lower doses and have reduced risks for dangerous side effects because the µ-opioid receptor agonist is largely excluded from the CNS.


Assuntos
Sistema Nervoso Central/metabolismo , Loperamida/farmacocinética , Morfolinas/farmacocinética , Receptores Opioides/agonistas , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Combinação de Medicamentos , Sinergismo Farmacológico , Feminino , Genótipo , Loperamida/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos ICR , Morfolinas/administração & dosagem , Distribuição Tecidual
9.
Mol Pharm ; 18(10): 3741-3749, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34460254

RESUMO

The pharmacokinetic profile of AAV particles following intrathecal delivery has not yet been clearly defined. The present study evaluated the distribution profile of adeno-associated virus serotype 5 (AAV5) viral vectors following lumbar intrathecal injection in mice. After a single bolus intrathecal injection, viral DNA concentrations in mouse whole blood, spinal cord, and peripheral tissues were determined using quantitative polymerase chain reaction (qPCR). The kinetics of AAV5 vector in whole blood and the concentration over time in spinal and peripheral tissues were analyzed. Distribution of the AAV5 vector to all levels of the spinal cord, dorsal root ganglia, and into systemic circulation occurred rapidly within 30 min following injection. Vector concentration in whole blood reached a maximum 6 h postinjection with a half-life of approximately 12 h. Area under the curve data revealed the highest concentration of vector distributed to dorsal root ganglia tissue. Immunohistochemical analysis revealed AAV5 particle colocalization with the pia mater at the spinal cord and macrophages in the dorsal root ganglia (DRG) 30 min after injection. These results demonstrate the widespread distribution of AAV5 particles through cerebrospinal fluid and preferential targeting of DRG tissue with possible clearance mechanisms via DRG macrophages.


Assuntos
Dependovirus , Vetores Genéticos/farmacocinética , Animais , DNA Viral/análise , DNA Viral/sangue , Feminino , Vetores Genéticos/administração & dosagem , Injeções Espinhais , Masculino , Camundongos , Camundongos Endogâmicos ICR , Reação em Cadeia da Polimerase em Tempo Real , Medula Espinal/química , Distribuição Tecidual , Transdução Genética/métodos
10.
Mol Pain ; 17: 17448069211029171, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34210178

RESUMO

A decarboxylated form of L-arginine, agmatine, preferentially antagonizes NMDArs containing Glun2B subunits within the spinal cord and lacks motor side effects commonly associated with non-subunit-selective NMDAr antagonism, namely sedation and motor impairment. Spinally delivered agmatine has been previously shown to reduce the development of tactile hypersensitivity arising from spinal nerve ligation. The present study interrogated the dependence of agmatine's alleviation of neuropathic pain (spared nerve injury (SNI) model) on GluN2B-containing NMDArs. SNI-induced hypersensitivity was induced in mice with significant reduction of levels of spinal GluN2B subunit of the NMDAr and their floxed controls. Agmatine reduced development of SNI-induced tactile hypersensitivity in controls but had no effect in subjects with reduced levels of GluN2B subunits. Ifenprodil, a known GluN2B-subunit-selective antagonist, similarly reduced tactile hypersensitivity in controls but not in the GluN2B-deficient mice. In contrast, MK-801, an NMDA receptor channel blocker, reduced hypersensitivity in both control and GluN2B-deficient mice, consistent with a pharmacological pattern expected from a NMDAr antagonist that does not have preference for GluN2B subtypes. Additionally, we observed that spinally delivered agmatine, ifenprodil and MK-801 inhibited nociceptive behaviors following intrathecal delivery of NMDA in control mice. By contrast, in GluN2B-deficient mice, MK-801 reduced NMDA-evoked nociceptive behaviors, but agmatine had a blunted effect and ifenprodil had no effect. These results demonstrate that agmatine requires the GluN2B subunit of the NMDA receptor for inhibitory pharmacological actions in pre-clinical models of NMDA receptor-dependent hypersensitivity.


Assuntos
Agmatina , Neuralgia , Agmatina/farmacologia , Agmatina/uso terapêutico , Animais , Maleato de Dizocilpina/farmacologia , Camundongos , Neuralgia/tratamento farmacológico , Receptores de N-Metil-D-Aspartato , Medula Espinal
11.
Eur J Pharmacol ; 885: 173330, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32726653

RESUMO

Sustained-release buprenorphine is widely used in mice with the intention of providing long-lasting analgesia. Statements about duration of therapeutic efficacy are based on persistence of serum buprenorphine levels over a minimum threshold, but behavioral data demonstrating sustained efficacy is not established. Additionally, chronic opioid exposure can induce tolerance and/or hyperalgesia; mice receiving sustained-release buprenorphine have not been evaluated for these effects. This study assessed clinical efficacy and duration of sustained-release buprenorphine in inflammatory, post-operative, and cancer pain; and screened for centrally-mediated opioid-induced hyperalgesia as well as opioid tolerance. At 1-2 mg/kg sustained-release buprenorphine, statistically significant analgesic efficacy occurred only at time points up to 2 h. These animals showed no changes in von Frey thresholds on the contralateral side, i.e. no centrally-mediated opioid hyperalgesia. To establish whether acute onset opioid tolerance resulted from a single sustained-release buprenorphine administration, we used the tail flick assay, exposing mice to sustained-release buprenorphine or saline on Day 1 and buprenorphine on Day 2. We measured duration and efficacy of 1 mg/kg buprenorphine after 1 mg/kg sustained-release buprenorphine, and also quantified a dose-response curve of buprenorphine (0.1-3 mg/kg) after 2 mg/kg sustained-release buprenorphine. Compared to control animals, mice previously exposed to sustained-release buprenorphine showed diminished analgesic response to buprenorphine; the resultant dose-response curve showed decreased efficacy. Pretreatment with naloxone, an opioid receptor antagonist, blocked sustained-release buprenorphine analgesic action. The short duration of antinociception following administration of sustained-release buprenorphine in mice is caused by the rapid development of tolerance.


Assuntos
Analgésicos Opioides/farmacologia , Buprenorfina/farmacologia , Antagonistas de Entorpecentes/farmacologia , Animais , Dor do Câncer/tratamento farmacológico , Preparações de Ação Retardada , Relação Dose-Resposta a Droga , Tolerância a Medicamentos , Hiperalgesia/tratamento farmacológico , Masculino , Camundongos , Camundongos Endogâmicos C3H , Naloxona/farmacologia , Medição da Dor/efeitos dos fármacos , Dor Pós-Operatória/tratamento farmacológico
12.
Anesthesiology ; 131(3): 649-663, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31343460

RESUMO

BACKGROUND: The long-term use of opioids for analgesia carries significant risk for tolerance, addiction, and diversion. These adverse effects are largely mediated by µ-opioid receptors in the central nervous system. Based on the authors' previous observation that morphine and δ-opioid receptor agonists synergize in spinal cord in a protein kinase Cε-dependent manner, they predicted that this µ-opioid receptor-δ-opioid receptor synergy would take place in the central terminals of nociceptive afferent fibers and generalize to their peripheral terminals. Therefore, the authors hypothesized that loperamide, a highly efficacious µ-opioid receptor agonist that is excluded from the central nervous system, and oxymorphindole, a δ-opioid receptor agonist that was shown to synergize with morphine spinally, would synergistically reverse complete Freund's adjuvant-induced hyperalgesia. METHODS: Using the Hargreaves assay for thermal nociception, the von Frey assay for mechanical nociception and the complete Freund's adjuvant-induced model of inflammatory pain, we tested the antinociceptive and antihyperalgesic effect of loperamide, oxymorphindole, or the loperamide-oxymorphindole combination. Animals (Institute for Cancer Research [ICR] CD1 strain mice; n = 511) received drug by systemic injection, intraplantar injection to the injured paw, or a transdermal solution on the injured paw. Dose-response curves for each route of administration and each nociceptive test were generated, and analgesic synergy was assessed by isobolographic analysis. RESULTS: In naïve animals, the loperamide-oxymorphindole combination ED50 value was 10 times lower than the theoretical additive ED50 value whether given systemically or locally. In inflamed animals, the combination was 150 times more potent systemically, and 84 times more potent locally. All combinations showed statistically significant synergy when compared to the theoretical additive values, as verified by isobolographic analysis. The antihyperalgesia was ablated by a peripherally-restricted opioid antagonist. CONCLUSIONS: From these data we conclude that the loperamide-oxymorphindole combination synergistically reverses complete Freund's adjuvant-induced inflammatory hyperalgesia. The authors also conclude that this interaction is mediated by opioid receptors located in the peripheral nervous system.


Assuntos
Analgesia/métodos , Loperamida/uso terapêutico , Morfolinas/uso terapêutico , Dor/tratamento farmacológico , Receptores Opioides delta/agonistas , Animais , Antidiarreicos/uso terapêutico , Modelos Animais de Doenças , Quimioterapia Combinada/métodos , Masculino
13.
Methods Mol Biol ; 1950: 199-207, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30783975

RESUMO

Gene therapy targeting the spinal cord is an important tool for analyzing mechanisms of nervous system diseases and the development of gene therapies. Analogous to a lumbar puncture in humans, the rodent spinal cord can be accessed through an efficient, noninvasive injection. Here we describe a method for AAV-mediated gene transfer to cells of the spinal cord by intrathecal injection of small quantities of AAV vector.


Assuntos
Dependovirus/genética , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Medula Espinal/metabolismo , Animais , Feminino , Imunofluorescência , Gânglios Espinais/metabolismo , Expressão Gênica , Genes Reporter , Vetores Genéticos/administração & dosagem , Imuno-Histoquímica , Injeções Espinhais , Masculino , Camundongos , Ratos , Transdução Genética , Transgenes
14.
Methods Mol Biol ; 1937: 305-312, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30706406

RESUMO

Delivery of viral vectors directly into the central nervous system (CNS) has emerged as an important tool for the refinement of gene therapy. Intrathecal delivery by direct lumbar puncture in conscious rodents offers a minimally invasive approach that avoids tissue damage and/or destruction. Here we describe delivery of small quantities of viral vector product to the intrathecal space of rodents via direct lumbar puncture aided by a catheter.


Assuntos
Dependovirus/genética , Vetores Genéticos/administração & dosagem , Punção Espinal/instrumentação , Animais , Catéteres , Feminino , Terapia Genética , Humanos , Injeções Espinhais , Camundongos , Punção Espinal/métodos
15.
J Neurophysiol ; 121(2): 662-671, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30427758

RESUMO

The role of the N-methyl-d-aspartate receptor (NMDAr) as a contributor to maladaptive neuroplasticity underlying the maintenance of chronic pain is well established. Agmatine, an NMDAr antagonist, has been shown to reverse tactile hypersensitivity in rodent models of neuropathic pain while lacking the side effects characteristic of global NMDAr antagonism, including sedation and motor impairment, indicating a likely subunit specificity of agmatine's NMDAr inhibition. The present study assessed whether agmatine inhibits subunit-specific NMDAr-mediated current in the dorsal horn of mouse spinal cord slices. We isolated NMDAr-mediated excitatory postsynaptic currents (EPSCs) in small lamina II dorsal horn neurons evoked by optogenetic stimulation of Nav1.8-containing nociceptive afferents. We determined that agmatine abbreviated the amplitude, duration, and decay constant of NMDAr-mediated EPSCs similarly to the application of the GluN2B antagonist ifenprodil. In addition, we developed a site-specific knockdown of the GluN2B subunit of the NMDAr. We assessed whether agmatine and ifenprodil were able to inhibit NMDAr-mediated current in the spinal cord dorsal horn of mice lacking the GluN2B subunit of the NMDAr by analysis of electrically evoked EPSCs. In control mouse spinal cord, agmatine and ifenprodil both inhibited amplitude and accelerated the decay kinetics. However, agmatine and ifenprodil failed to attenuate the decay kinetics of NMDAr-mediated EPSCs in the GluN2B-knockdown mouse spinal cord. The present study indicates that agmatine preferentially antagonizes GluN2B-containing NMDArs in mouse dorsal horn neurons. NEW & NOTEWORTHY Our study is the first to report that agmatine preferentially antagonizes the GluN2B receptor subunit of the N-methyl-d-aspartate (NMDA) receptor in spinal cord. The preferential targeting of GluN2B receptor is consistent with the pharmacological profile of agmatine in that it reduces chronic pain without the motor side effects commonly seen with non-subunit-selective NMDA receptor antagonists.


Assuntos
Agmatina/farmacologia , Agonistas de Aminoácidos Excitatórios/farmacologia , Receptores de N-Metil-D-Aspartato/agonistas , Corno Dorsal da Medula Espinal/efeitos dos fármacos , Animais , Antagonistas de Aminoácidos Excitatórios/farmacologia , Potenciais Pós-Sinápticos Excitadores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nociceptividade , Piperidinas/farmacologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Receptores de N-Metil-D-Aspartato/metabolismo , Células Receptoras Sensoriais/efeitos dos fármacos , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Corno Dorsal da Medula Espinal/metabolismo , Corno Dorsal da Medula Espinal/fisiologia
16.
Pain ; 159(9): 1802-1813, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29781959

RESUMO

Neuroplasticity in the dorsal horn after peripheral nerve damage contributes critically to the establishment of chronic pain. The neurosecretory protein VGF (nonacronymic) is rapidly and robustly upregulated after nerve injury, and therefore, peptides generated from it are positioned to serve as signals for peripheral damage. The goal of this project was to understand the spinal modulatory effects of the C-terminal VGF-derived peptide TLQP-62 at the cellular level and gain insight into the function of the peptide in the development of neuropathic pain. In a rodent model of neuropathic pain, we demonstrate that endogenous levels of TLQP-62 increased in the spinal cord, and its immunoneutralization led to prolonged attenuation of the development of nerve injury-induced hypersensitivity. Using multiphoton imaging of submaximal glutamate-induced Ca responses in spinal cord slices, we demonstrate the ability of TLQP-62 to potentiate glutamatergic responses in the dorsal horn. We further demonstrate that the peptide selectively potentiates responses of high-threshold spinal neurons to mechanical stimuli in singe-unit in vivo recordings. These findings are consistent with a function of TLQP-62 in spinal plasticity that may contribute to central sensitization after nerve damage.


Assuntos
Hiperalgesia/metabolismo , Plasticidade Neuronal/fisiologia , Peptídeos/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Medula Espinal/metabolismo , Animais , Cálcio/metabolismo , Hiperalgesia/etiologia , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Neurônios/metabolismo , Neuropeptídeos/metabolismo , Medição da Dor , Traumatismos dos Nervos Periféricos/complicações , Traumatismos dos Nervos Periféricos/fisiopatologia , Ratos , Ratos Sprague-Dawley , Medula Espinal/fisiopatologia
17.
Pain ; 158(12): 2431-2441, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28891868

RESUMO

The mu opioid receptor (MOR) and metabotropic glutamate receptor 5 (mGluR5) are well-established pharmacological targets in the management of chronic pain. Both receptors are expressed in the spinal cord. MMG22, a bivalent ligand containing 2 pharmacophores separated by 22 atoms, which simultaneously activates MOR and antagonizes mGluR5, has been shown to produce potent reversal of tactile hypersensitivity in rodent models of lipopolysaccharide (LPS)-and bone cancer-induced chronic pain. This study assessed whether intrathecal MMG22 also is effective in reducing pain of neuropathic origin. Furthermore, we theorized that MMG22 should reduce hyperalgesia in nerve-injured mice in a manner consistent with a synergistic interaction between MOR and mGluR5. Several weeks after spared nerve injury, tactile hypersensitivity was reversed in mice by the intrathecal injection of MMG22 (0.01-10 nmol) but also by its shorter spacer analog, MMG10, with similar potency. The potencies of the bivalent ligands were 10- to 14-fold higher than those of the compounds upon which the bivalent structure was based, the MOR agonist oxymorphone and the mGluR5 antagonist MPEP. Coadministration of oxymorphone and MPEP demonstrated analgesic synergism, an interaction confirmed by isobolographic analysis. This study indicates that in the spared nerve injury-induced model of neuropathic pain, the 2 pharmacophores of the bivalent ligands MMG22 and MMG10 target MOR and mGluR5 as separate receptor monomers. The observed increase in the potency of MMG22 and MMG10, compared with oxymorphone and MPEP, may reflect the synergistic interaction of the 2 pharmacophores of the bivalent ligand acting at their respective separate receptor monomers.


Assuntos
Analgésicos/uso terapêutico , Antagonistas de Entorpecentes/farmacologia , Neuralgia/tratamento farmacológico , Receptor de Glutamato Metabotrópico 5/efeitos dos fármacos , Receptores Opioides mu/agonistas , Animais , Hiperalgesia/tratamento farmacológico , Injeções Espinhais/métodos , Ligantes , Masculino , Camundongos , Antagonistas de Entorpecentes/administração & dosagem
18.
Pain ; 155(7): 1229-1237, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24657450

RESUMO

VGF (nonacronymic) is a granin-like protein that is packaged and proteolytically processed within the regulated secretory pathway. VGF and peptides derived from its processing have been implicated in neuroplasticity associated with learning, memory, depression, and chronic pain. In sensory neurons, VGF is rapidly increased following peripheral nerve injury and inflammation. Several bioactive peptides generated from the C-terminus of VGF have pronociceptive spinal effects. The goal of the present study was to examine the spinal effects of the peptide TLQP-21 and determine whether it participates in spinal mechanisms of persistent pain. Application of exogenous TLQP-21 induced dose-dependent thermal hyperalgesia in the warm-water immersion tail-withdrawal test. This hyperalgesia was inhibited by a p38 mitogen-activated protein kinase inhibitor, as well as inhibitors of cyclooxygenase and lipoxygenase. We used immunoneutralization of TLQP-21 to determine the function of the endogenous peptide in mechanisms underlying persistent pain. In mice injected intradermally with complete Freund adjuvant, intrathecal treatment with anti-TLQP-21 immediately prior to or 5hours after induction of inflammation dose-dependently inhibited tactile hypersensitivity and thermal hyperalgesia. Intrathecal anti-TL21 administration also attenuated the development and maintenance of tactile hypersensitivity in the spared nerve injury model of neuropathic pain. These results provide evidence that endogenous TLQP-21 peptide contributes to the mechanisms of spinal neuroplasticity after inflammation and nerve injury.


Assuntos
Hiperalgesia/metabolismo , Inflamação/metabolismo , Neuralgia/metabolismo , Neuropeptídeos/metabolismo , Nociceptividade/fisiologia , Fragmentos de Peptídeos/metabolismo , Traumatismos dos Nervos Periféricos/metabolismo , Animais , Inibidores de Ciclo-Oxigenase/farmacologia , Modelos Animais de Doenças , Adjuvante de Freund/intoxicação , Temperatura Alta , Hiperalgesia/induzido quimicamente , Inflamação/induzido quimicamente , Injeções Espinhais , Inibidores de Lipoxigenase/farmacologia , Camundongos , Fatores de Crescimento Neural , Nociceptividade/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Nervo Fibular/lesões , Pele/efeitos dos fármacos , Nervo Tibial/lesões , Proteínas Quinases p38 Ativadas por Mitógeno/antagonistas & inibidores
19.
PLoS One ; 8(11): e79239, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24260176

RESUMO

The development of opioid addiction in subjects with established chronic pain is an area that is poorly understood. It is critically important to clearly understand the neurobiology associated with propensity toward conversion to addiction under conditions of chronic pain. To pose the question whether the presence of chronic pain influences motivation to self-administer opioids for reward, we applied a combination of rodent models of chronic mechanical hyperalgesia and opioid self-administration. We studied fentanyl self-administration in mice under three conditions that induce chronic mechanical hyperalgesia: inflammation, peripheral nerve injury, and repeated chemotherapeutic injections. Responding for fentanyl was compared among these conditions and their respective standard controls (naïve condition, vehicle injection or sham surgery). Acquisition of fentanyl self-administration behavior was reduced or absent in all three conditions of chronic hyperalgesia relative to control mice with normal sensory thresholds. To control for potential impairment in ability to learn the lever-pressing behavior or perform the associated motor tasks, all three groups were evaluated for acquisition of food-maintained responding. In contrast to the opioid, chronic hyperalgesia did not interfere with the reinforcing effect of food. These studies indicate that the establishment of chronic hyperalgesia is associated with reduced or ablated motivation to seek opioid reward in mice.


Assuntos
Comportamento Animal/efeitos dos fármacos , Dor Crônica , Fentanila/farmacologia , Atividade Motora/efeitos dos fármacos , Animais , Dor Crônica/tratamento farmacológico , Dor Crônica/fisiopatologia , Feminino , Hiperalgesia/tratamento farmacológico , Hiperalgesia/fisiopatologia , Masculino , Camundongos , Autoadministração
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...