Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Cell Death Discov ; 8(1): 253, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35523770

RESUMO

Ferroptosis is a caspase-independent form of regulated cell death strongly linked to the accumulation of reactive lipid hydroperoxides. Lipid hydroperoxides are neutralized in cells by glutathione peroxidase 4 (GPX4) and inhibitors of GPX4 are potent ferroptosis inducers with therapeutic potential in cancer. Here we report that siRNA-mediated silencing of the AMPK-related kinase NUAK2 suppresses cell death by small-molecule inducers of ferroptosis but not apoptosis. Mechanistically we find that NUAK2 suppresses the expression of GPX4 at the RNA level and enhances ferroptosis triggered by GPX4 inhibitors in a manner independent of its kinase activity. NUAK2 is amplified along with MDM4 in a subset of breast cancers, particularly the claudin-low subset, suggesting that this may predict vulnerability to GPX4 inhibitors. These findings identify a novel pathway regulating GPX4 expression as well as ferroptotic sensitivity with potential as a biomarker of breast cancer patients that might respond to GPX4 inhibition as a therapeutic strategy.

2.
Nat Struct Mol Biol ; 29(1): 47-58, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35013599

RESUMO

Inosine-5'-monophosphate dehydrogenase (IMPDH), a key regulatory enzyme in purine nucleotide biosynthesis, dynamically assembles filaments in response to changes in metabolic demand. Humans have two isoforms: IMPDH2 filaments reduce sensitivity to feedback inhibition, while IMPDH1 assembly remains uncharacterized. IMPDH1 plays a unique role in retinal metabolism, and point mutants cause blindness. Here, in a series of cryogenic-electron microscopy structures we show that human IMPDH1 assembles polymorphic filaments with different assembly interfaces in extended and compressed states. Retina-specific splice variants introduce structural elements that reduce sensitivity to GTP inhibition, including stabilization of the extended filament form. Finally, we show that IMPDH1 disease mutations fall into two classes: one disrupts GTP regulation and the other has no effect on GTP regulation or filament assembly. These findings provide a foundation for understanding the role of IMPDH1 in retinal function and disease and demonstrate the diverse mechanisms by which metabolic enzyme filaments are allosterically regulated.


Assuntos
IMP Desidrogenase/genética , Retina/enzimologia , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Guanosina Trifosfato/metabolismo , Células HEK293 , Humanos , IMP Desidrogenase/química , IMP Desidrogenase/ultraestrutura , Modelos Moleculares , NAD/metabolismo , Doenças Retinianas/genética
3.
Nat Commun ; 12(1): 2244, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33854057

RESUMO

Ferroptosis is associated with lipid hydroperoxides generated by the oxidation of polyunsaturated acyl chains. Lipid hydroperoxides are reduced by glutathione peroxidase 4 (GPX4) and GPX4 inhibitors induce ferroptosis. However, the therapeutic potential of triggering ferroptosis in cancer cells with polyunsaturated fatty acids is unknown. Here, we identify conjugated linoleates including α-eleostearic acid (αESA) as ferroptosis inducers. αESA does not alter GPX4 activity but is incorporated into cellular lipids and promotes lipid peroxidation and cell death in diverse cancer cell types. αESA-triggered death is mediated by acyl-CoA synthetase long-chain isoform 1, which promotes αESA incorporation into neutral lipids including triacylglycerols. Interfering with triacylglycerol biosynthesis suppresses ferroptosis triggered by αESA but not by GPX4 inhibition. Oral administration of tung oil, naturally rich in αESA, to mice limits tumor growth and metastasis with transcriptional changes consistent with ferroptosis. Overall, these findings illuminate a potential approach to ferroptosis, complementary to GPX4 inhibition.


Assuntos
Coenzima A Ligases/metabolismo , Ferroptose , Ácidos Linolênicos/metabolismo , Neoplasias de Mama Triplo Negativas/enzimologia , Neoplasias de Mama Triplo Negativas/fisiopatologia , Animais , Morte Celular , Coenzima A Ligases/genética , Humanos , Camundongos , Camundongos Endogâmicos NOD , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/genética , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
4.
Biol Open ; 9(7)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32580972

RESUMO

Polymerization of metabolic enzymes into micron-scale assemblies is an emerging mechanism for regulating their activity. CTP synthase (CTPS) is an essential enzyme in the biosynthesis of the nucleotide CTP and undergoes regulated and reversible assembly into large filamentous structures in organisms from bacteria to humans. The purpose of these assemblies is unclear. A major challenge to addressing this question has been the inability to abolish assembly without eliminating CTPS protein. Here we demonstrate that a recently reported point mutant in CTPS, Histidine 355A (H355A), prevents CTPS filament assembly in vivo and dominantly inhibits the assembly of endogenous wild-type CTPS in the Drosophila ovary. Expressing this mutant in ovarian germline cells, we show that disruption of CTPS assembly in early stage egg chambers reduces egg production. This effect is exacerbated in flies fed the glutamine antagonist 6-diazo-5-oxo-L-norleucine, which inhibits de novo CTP synthesis. These findings introduce a general approach to blocking the assembly of polymerizing enzymes without eliminating their catalytic activity and demonstrate a role for CTPS assembly in supporting egg production, particularly under conditions of limited glutamine metabolism.This article has an associated First Person interview with the first author of the paper.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Drosophila/fisiologia , Células Germinativas/metabolismo , Multimerização Proteica , Reprodução , Animais , Carbono-Nitrogênio Ligases/química , Carbono-Nitrogênio Ligases/genética , Metabolismo Energético , Imunofluorescência , Expressão Gênica , Glutamina/metabolismo , Mutação
5.
Mol Biol Cell ; 31(12): 1201-1205, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32463766

RESUMO

Many different enzymes in intermediate metabolism dynamically assemble filamentous polymers in cells, often in response to changes in physiological conditions. Most of the enzyme filaments known to date have only been observed in cells, but in a handful of cases structural and biochemical studies have revealed the mechanisms and consequences of assembly. In general, enzyme polymerization functions as a mechanism to allosterically tune enzyme kinetics, and it may play a physiological role in integrating metabolic signaling. Here, we highlight some principles of metabolic filaments by focusing on two well-studied examples in nucleotide biosynthesis pathways-inosine-5'-monophosphate (IMP) dehydrogenase and cytosine triphosphate (CTP) synthase.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , IMP Desidrogenase/metabolismo , Carbono-Nitrogênio Ligases/fisiologia , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Células HeLa , Humanos , IMP Desidrogenase/fisiologia , Polimerização , Multimerização Proteica/fisiologia
6.
Clin Cancer Res ; 25(13): 4179-4193, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30867219

RESUMO

PURPOSE: For many tumors, signaling exchanges between cancer cells and other cells in their microenvironment influence overall tumor signaling. Some of these exchanges depend on expression of the primary cilium on nontransformed cell populations, as extracellular ligands including Sonic Hedgehog (SHH), PDGFRα, and others function through receptors spatially localized to cilia. Cell ciliation is regulated by proteins that are themselves therapeutic targets. We investigated whether kinase inhibitors of clinical interest influence ciliation and signaling by proteins with ciliary receptors in cancer and other cilia-relevant disorders, such as polycystic kidney disease (PKD). EXPERIMENTAL DESIGN: We screened a library of clinical and preclinical kinase inhibitors, identifying drugs that either prevented or induced ciliary disassembly. Specific bioactive protein targets of the drugs were identified by mRNA depletion. Mechanism of action was defined, and activity of select compounds investigated. RESULTS: We identified multiple kinase inhibitors not previously linked to control of ciliation, including sunitinib, erlotinib, and an inhibitor of the innate immune pathway kinase, IRAK4. For all compounds, activity was mediated through regulation of Aurora-A (AURKA) activity. Drugs targeting cilia influenced proximal cellular responses to SHH and PDGFRα. In vivo, sunitinib durably limited ciliation and cilia-related biological activities in renal cells, renal carcinoma cells, and PKD cysts. Extended analysis of IRAK4 defined a subset of innate immune signaling effectors potently affecting ciliation. CONCLUSIONS: These results suggest a paradigm by which targeted drugs may have unexpected off-target effects in heterogeneous cell populations in vivo via control of a physical platform for receipt of extracellular ligands.


Assuntos
Cílios/efeitos dos fármacos , Cílios/metabolismo , Descoberta de Drogas , Animais , Biomarcadores , Linhagem Celular , Suscetibilidade a Doenças , Cloridrato de Erlotinib/farmacologia , Proteínas Hedgehog/metabolismo , Humanos , Doenças Renais Císticas/etiologia , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Camundongos , Modelos Biológicos , Comunicação Parácrina/efeitos dos fármacos , Fator de Crescimento Derivado de Plaquetas/metabolismo , Rim Policístico Autossômico Dominante/metabolismo , Inibidores de Proteínas Quinases/farmacologia , RNA Interferente Pequeno/genética , Transdução de Sinais/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Sunitinibe/farmacologia
7.
J Cell Sci ; 131(17)2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-30154209

RESUMO

T cell-mediated adaptive immunity requires naïve, unstimulated T cells to transition from a quiescent metabolic state into a highly proliferative state upon T cell receptor engagement. This complex process depends on transcriptional changes mediated by Ca2+-dependent NFAT signaling, mTOR-mediated signaling and increased activity of the guanine nucleotide biosynthetic inosine-5'-monophosphate (IMP) dehydrogenase 1 and 2 enzymes (IMPDH1 and IMPDH2, hereafter IMPDH). Inhibitors of these pathways serve as potent immunosuppressants. Unexpectedly, we discovered that all three pathways converge to promote the assembly of IMPDH protein into micron-scale macromolecular filamentous structures in response to T cell activation. Assembly is post-transcriptionally controlled by mTOR and the Ca2+ influx regulator STIM1. Furthermore, IMPDH assembly and catalytic activity were negatively regulated by guanine nucleotide levels, suggesting a negative feedback loop that limits biosynthesis of guanine nucleotides. Filamentous IMPDH may be more resistant to this inhibition, facilitating accumulation of the higher GTP levels required for T cell proliferation.


Assuntos
IMP Desidrogenase/metabolismo , Linfócitos T/enzimologia , Animais , Células Cultivadas , Nucleotídeos de Guanina/metabolismo , IMP Desidrogenase/genética , Ativação Linfocitária , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Baço/enzimologia , Baço/imunologia , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Linfócitos T/imunologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
8.
Mol Cancer Ther ; 17(1): 264-275, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29021292

RESUMO

Cancer cells can exhibit altered dependency on specific metabolic pathways and targeting these dependencies is a promising therapeutic strategy. Triple-negative breast cancer (TNBC) is an aggressive and genomically heterogeneous subset of breast cancer that is resistant to existing targeted therapies. To identify metabolic pathway dependencies in TNBC, we first conducted mass spectrometry-based metabolomics of TNBC and control cells. Relative levels of intracellular metabolites distinguished TNBC from nontransformed breast epithelia and revealed two metabolic subtypes within TNBC that correlate with markers of basal-like versus non-basal-like status. Among the distinguishing metabolites, levels of the cellular redox buffer glutathione were lower in TNBC cell lines compared to controls and markedly lower in non-basal-like TNBC. Significantly, these cell lines showed enhanced sensitivity to pharmacologic inhibition of glutathione biosynthesis that was rescued by N-acetylcysteine, demonstrating a dependence on glutathione production to suppress ROS and support tumor cell survival. Consistent with this, patients whose tumors express elevated levels of γ-glutamylcysteine ligase, the rate-limiting enzyme in glutathione biosynthesis, had significantly poorer survival. We find, further, that agents that limit the availability of glutathione precursors enhance both glutathione depletion and TNBC cell killing by γ-glutamylcysteine ligase inhibitors in vitro Importantly, we demonstrate the ability to this approach to suppress glutathione levels and TNBC xenograft growth in vivo Overall, these findings support the potential of targeting the glutathione biosynthetic pathway as a therapeutic strategy in TNBC and identify the non-basal-like subset as most likely to respond. Mol Cancer Ther; 17(1); 264-75. ©2017 AACR.


Assuntos
Glutationa/biossíntese , Neoplasias de Mama Triplo Negativas/metabolismo , Animais , Vias Biossintéticas , Linhagem Celular Tumoral , Feminino , Xenoenxertos , Humanos , Queratinas/biossíntese , Camundongos , Camundongos Endogâmicos NOD , Terapia de Alvo Molecular , RNA Interferente Pequeno/genética , Espécies Reativas de Oxigênio/metabolismo , Transfecção , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
9.
Mol Biol Cell ; 2017 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-28794265

RESUMO

Several metabolic enzymes undergo reversible polymerization into macromolecular assemblies. The function of these assemblies is often unclear but in some cases they regulate enzyme activity and metabolic homeostasis. The guanine nucleotide biosynthetic enzyme inosine monophosphate dehydrogenase (IMPDH) forms octamers that polymerize into helical chains. In mammalian cells, IMPDH filaments can associate into micron-length assemblies. Polymerization and enzyme activity are regulated in part by binding of purine nucleotides to an allosteric regulatory domain. ATP promotes octamer polymerization, whereas GTP promotes a compact, inactive conformation whose ability to polymerize is unknown. Also unclear is whether polymerization directly alters IMPDH catalytic activity. To address this, we identified point mutants of human IMPDH2 that either prevent or promote polymerization. Unexpectedly, we found that polymerized and non-assembled forms of recombinant IMPDH have comparable catalytic activity, substrate affinity, and GTP sensitivity and validated this finding in cells. Electron microscopy revealed that substrates and allosteric nucleotides shift the equilibrium between active and inactive conformations in both the octamer and the filament. Unlike other metabolic filaments, which selectively stabilize active or inactive conformations, recombinant IMPDH filaments accommodate multiple states. These conformational states are finely tuned by substrate availability and purine balance, while polymerization may allow cooperative transitions between states.

10.
J Glaucoma ; 26(9): 780-786, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28767461

RESUMO

PURPOSE: To report long-term (>5 y) outcomes of plateau iris syndrome patients treated with argon laser peripheral iridoplasty (ALPI). PATIENTS AND METHODS: A retrospective chart review was performed on all patients with plateau iris syndrome treated with ALPI from 1996 to 2007. The study included 22 eyes from 22 patients with plateau iris after peripheral iridotomy that were followed for at least 1 year after ALPI. The primary outcome was incidence of needing any intraocular pressure (IOP)-lowering medications or surgery (either a filtering procedure or phacoemulsification). Demographic and baseline clinical data were summarized by mean (±SD) or frequency (percentage). Snellen best-corrected visual acuity was converted to logMAR. The paired t test was used to compare IOP changes, number of IOP-lowering medications, and best-corrected visual acuity from baseline to annual follow-up. RESULTS: Mean follow-up was 76 months. Only 2 (9%) eyes maintained an IOP<21 mm Hg without requiring medication or surgery. Seventeen (77%) eyes underwent surgery at an average of 49.1±7.9 months after ALPI. Eight (36%) eyes underwent filtering surgery, and 9 (41%) eyes underwent phacoemulsification. Three months after cataract extraction, no eyes required IOP-lowering medication. CONCLUSIONS: The beneficial effects of ALPI last for <4 years, with the majority of patients (77%) requiring surgery. Phacoemulsification alone was a successful treatment for plateau iris in our patient population.


Assuntos
Glaucoma de Ângulo Fechado/cirurgia , Doenças da Íris/cirurgia , Iris/cirurgia , Terapia a Laser/métodos , Adulto , Idoso , Coagulação com Plasma de Argônio , Feminino , Seguimentos , Humanos , Pressão Intraocular/fisiologia , Implante de Lente Intraocular , Masculino , Pessoa de Meia-Idade , Facoemulsificação , Estudos Retrospectivos , Tonometria Ocular , Acuidade Visual/fisiologia
11.
Methods Mol Biol ; 1608: 337-342, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28695520

RESUMO

Inosine monophosphate dehydrogenase (IMPDH) is a rate-limiting enzyme involved in purine nucleotide biosynthesis. It is responsible for catalyzing the oxidation of inosine monophosphate (IMP) into xanthosine monophosphate (XMP). Concurrently, the cofactor NAD+ is reduced to NADH. Poly(ADP-ribose) polymerase 1 (PARP-1) also utilizes NAD+ as a substrate to synthesize poly(ADP-ribose). It has been demonstrated that inhibition of PARP-1 activity can be an effective cancer therapeutic. However, most PARP-1 inhibitors, including olaparib, were developed as NAD+ analogs. Therefore, these inhibitors likely interfere with other NAD+-dependent pathways such as the one involved in de novo purine metabolism. In this chapter, we describe a method to quantitatively measure IMPDH activity by taking advantage of the autofluorescence of the product NADH. We use this method to analyze the effects of olaparib and non-NAD+-like PARP-1 inhibitor (5F02) on IMPDH activity. We found that olaparib, unlike 5F02, significantly inhibits IMPDH activity in a dose-dependent manner. Our results suggest that IMPDH inhibition is an off-target effect of olaparib treatment. The consequences of this effect should be addressed by future clinical studies.


Assuntos
Bioensaio/métodos , IMP Desidrogenase/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Animais , Humanos , Inosina Monofosfato/metabolismo , NAD/metabolismo , Oxirredução/efeitos dos fármacos , Ribonucleotídeos/metabolismo , Xantina
12.
PLoS One ; 11(9): e0162283, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27606482

RESUMO

PURPOSE: To evaluate the changes in anterior chamber angle (ACA) parameters in primary angle closure (PAC) spectrum eyes before and after cataract extraction (CE) and compare to the changes after laser peripheral iridotomy (LPI) using anterior segment optical coherence tomography (ASOCT). METHODS: Twenty-eight PAC spectrum eyes of 18 participants who underwent CE and 34 PAC spectrum eyes of 21 participants who underwent LPI were included. ASOCT images with 3-dimensional mode angle analysis scans were taken with the CASIA SS-1000 (Tomey Corp., Nagoya, Japan) before and after CE or LPI. Mixed-effect model analysis was used to 1) compare best-corrected visual acuity, intraocular pressure, and ACA parameters before and after CE; 2) identify and estimate the effects of potential contributing factors affecting changes in ACA parameters; and 3) compare CE and LPI treatment groups. RESULTS: The increase in average angle parameters (TISA750 and TICV750) was significantly greater after CE than LPI. TICV750 increased by 102% (2.114 [±1.203] µL) after LPI and by 174% (4.546 [± 1.582] µL) after CE (P < 0.001). Change of TICV750 in the CE group was significantly affected by age (P = 0.002), race (P = 0.006), and intraocular lens power (P = 0.037). CONCLUSIONS: CE results in greater anatomic changes in the ACA than LPI in PAC spectrum eyes. ASOCT may be used to follow anatomic changes in the angle after intervention.


Assuntos
Segmento Anterior do Olho/cirurgia , Extração de Catarata , Glaucoma de Ângulo Fechado/cirurgia , Iris/cirurgia , Lasers , Tomografia de Coerência Óptica/métodos , Segmento Anterior do Olho/patologia , Segmento Anterior do Olho/fisiopatologia , Demografia , Feminino , Gonioscopia , Humanos , Pressão Intraocular , Iris/patologia , Iris/fisiopatologia , Masculino , Pessoa de Meia-Idade , Malha Trabecular/patologia , Malha Trabecular/cirurgia
13.
Cell Rep ; 16(5): 1273-1286, 2016 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-27452461

RESUMO

Small-molecule BET bromodomain inhibitors (BETis) are actively being pursued in clinical trials for the treatment of a variety of cancers, but the mechanisms of resistance to BETis remain poorly understood. Using a mass spectrometry approach that globally measures kinase signaling at the proteomic level, we evaluated the response of the kinome to targeted BETi treatment in a panel of BRD4-dependent ovarian carcinoma (OC) cell lines. Despite initial inhibitory effects of BETi, OC cells acquired resistance following sustained treatment with the BETi JQ1. Through application of multiplexed inhibitor beads (MIBs) and mass spectrometry, we demonstrate that BETi resistance is mediated by adaptive kinome reprogramming, where activation of compensatory pro-survival kinase networks overcomes BET protein inhibition. Furthermore, drug combinations blocking these kinases may prevent or delay the development of drug resistance and enhance the efficacy of BETi therapy.


Assuntos
Antineoplásicos/farmacologia , Proteínas Nucleares/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Humanos , Proteômica/métodos , Transdução de Sinais/fisiologia
14.
PLoS One ; 11(1): e0147760, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26815917

RESUMO

PURPOSE: Define criteria for iris-related parameters in an adult open angle population as measured with swept source Fourier domain anterior segment optical coherence tomography (ASOCT). METHODS: Ninety-eight eyes of 98 participants with open angles were included and stratified into 5 age groups (18-35, 36-45, 46-55, 56-65, and 66-79 years). ASOCT scans with 3D mode angle analysis were taken with the CASIA SS-1000 (Tomey Corporation, Nagoya, Japan) and analyzed using the Anterior Chamber Analysis and Interpretation software. Anterior iris surface length (AISL), length of scleral spur landmark (SSL) to pupillary margin (SSL-to-PM), iris contour ratio (ICR = AISL/SSL-to-PM), pupil radius, radius of iris centroid (RICe), and iris volume were measured. Outcome variables were summarized for all eyes and age groups, and mean values among age groups were compared using one-way analysis of variance. Stepwise regression analysis was used to investigate demographic and ocular characteristic factors that affected each iris-related parameter. RESULTS: Mean (±SD) values were 2.24 mm (±0.46), 4.06 mm (±0.27), 3.65 mm (±0.48), 4.16 mm (±0.47), 1.14 (±0.04), 1.51 mm2 (±0.23), and 38.42 µL (±4.91) for pupillary radius, RICe, SSL-to-PM, AISL, ICR, iris cross-sectional area, and iris volume, respectively. Both pupillary radius (P = 0.002) and RICe (P = 0.027) decreased with age, while SSL-to-PM (P = 0.002) and AISL increased with age (P = 0.001). ICR (P = 0.54) and iris volume (P = 0.49) were not affected by age. CONCLUSION: This study establishes reference values for iris-related parameters in an adult open angle population, which will be useful for future studies examining the role of iris changes in pathologic states.


Assuntos
Glaucoma de Ângulo Aberto/patologia , Iris/patologia , Hipertensão Ocular/patologia , Tomografia de Coerência Óptica/métodos , Adolescente , Adulto , Fatores Etários , Idoso , Segmento Anterior do Olho/patologia , Feminino , Glaucoma de Ângulo Aberto/diagnóstico , Humanos , Masculino , Pessoa de Meia-Idade , Hipertensão Ocular/diagnóstico , Valores de Referência , Adulto Jovem
15.
Cell Rep ; 14(4): 772-781, 2016 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-26776524

RESUMO

Small-molecule kinase inhibitors have typically been designed to inhibit wild-type kinases rather than the mutant forms that frequently arise in diseases such as cancer. Mutations can have serious clinical implications by increasing kinase catalytic activity or conferring therapeutic resistance. To identify opportunities to repurpose inhibitors against disease-associated mutant kinases, we conducted a large-scale functional screen of 183 known kinase inhibitors against 76 recombinant mutant kinases. The results revealed lead compounds with activity against clinically important mutant kinases, including ALK, LRRK2, RET, and EGFR, as well as unexpected opportunities for repurposing FDA-approved kinase inhibitors as leads for additional indications. Furthermore, using T674I PDGFRα as an example, we show how single-dose screening data can provide predictive structure-activity data to guide subsequent inhibitor optimization. This study provides a resource for the development of inhibitors against numerous disease-associated mutant kinases and illustrates the potential of unbiased profiling as an approach to compound-centric inhibitor development.


Assuntos
Antineoplásicos/farmacologia , Receptores ErbB/antagonistas & inibidores , Mutação , Inibidores de Proteínas Quinases/farmacologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia , Antineoplásicos/química , Linhagem Celular Tumoral , Descoberta de Drogas/métodos , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Ligação Proteica , Inibidores de Proteínas Quinases/química , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Bibliotecas de Moléculas Pequenas/química
16.
Methods Mol Biol ; 1360: 87-95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26501904

RESUMO

Aberrant kinase signaling has been implicated in a number of diseases. While kinases have become attractive drug targets, only a small fraction of human protein kinases have validated inhibitors. Screening of libraries of compounds against a kinase or kinases of interest is routinely performed during kinase inhibitor development to identify promising scaffolds for a particular target and to identify kinase targets for compounds of interest. Screening of more focused compound libraries may also be conducted in the later stages of inhibitor development to improve potency and optimize selectivity. The dot blot kinase assay is a robust, high-throughput kinase assay that can be used to screen a number of small-molecule compounds against one kinase of interest or several kinases. Here, a protocol for a dot blot kinase assay used for measuring insulin receptor kinase activity is presented. This protocol can be readily adapted for use with other protein kinases.


Assuntos
Ensaios de Triagem em Larga Escala/métodos , Immunoblotting/métodos , Inibidores de Proteínas Quinases/isolamento & purificação , Radiometria/métodos , Trifosfato de Adenosina/metabolismo , Sítios de Ligação , Humanos , Indicadores e Reagentes , Inibidores de Proteínas Quinases/farmacologia , Receptor de Insulina/antagonistas & inibidores , Bibliotecas de Moléculas Pequenas/farmacologia
17.
Sci Signal ; 8(405): rs13, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26628682

RESUMO

Protein kinase autophosphorylation is a common regulatory mechanism in cell signaling pathways. Crystal structures of several homomeric protein kinase complexes have a serine, threonine, or tyrosine autophosphorylation site of one kinase monomer located in the active site of another monomer, a structural complex that we call an "autophosphorylation complex." We developed and applied a structural bioinformatics method to identify all such autophosphorylation complexes in x-ray crystallographic structures in the Protein Data Bank (PDB). We identified 15 autophosphorylation complexes in the PDB, of which five complexes had not previously been described in the publications describing the crystal structures. These five complexes consist of tyrosine residues in the N-terminal juxtamembrane regions of colony-stimulating factor 1 receptor (CSF1R, Tyr(561)) and ephrin receptor A2 (EPHA2, Tyr(594)), tyrosine residues in the activation loops of the SRC kinase family member LCK (Tyr(394)) and insulin-like growth factor 1 receptor (IGF1R, Tyr(1166)), and a serine in a nuclear localization signal region of CDC-like kinase 2 (CLK2, Ser(142)). Mutations in the complex interface may alter autophosphorylation activity and contribute to disease; therefore, we mutated residues in the autophosphorylation complex interface of LCK and found that two mutations impaired autophosphorylation (T445V and N446A) and mutation of Pro(447) to Ala, Gly, or Leu increased autophosphorylation. The identified autophosphorylation sites are conserved in many kinases, suggesting that, by homology, these complexes may provide insight into autophosphorylation complex interfaces of kinases that are relevant drug targets.


Assuntos
Bases de Dados de Proteínas , Proteína Tirosina Quinase p56(lck) Linfócito-Específica , Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Receptor EphA2 , Receptor de Fator Estimulador de Colônias de Macrófagos , Substituição de Aminoácidos , Células HEK293 , Humanos , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/química , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/genética , Proteína Tirosina Quinase p56(lck) Linfócito-Específica/metabolismo , Mutação de Sentido Incorreto , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/química , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Receptor EphA2/química , Receptor EphA2/genética , Receptor EphA2/metabolismo , Receptor de Fator Estimulador de Colônias de Macrófagos/química , Receptor de Fator Estimulador de Colônias de Macrófagos/genética , Receptor de Fator Estimulador de Colônias de Macrófagos/metabolismo
18.
Mol Cancer Ther ; 14(1): 298-306, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25344583

RESUMO

Triple-negative breast cancers (TNBC), negative for estrogen receptor, progesterone receptor, and ERBB2 amplification, are resistant to standard targeted therapies and exhibit a poor prognosis. Furthermore, they are highly heterogeneous with respect to genomic alterations, and common therapeutic targets are lacking though substantial evidence implicates dysregulated kinase signaling. Recently, six subtypes of TNBC were identified based on gene expression and were proposed to predict sensitivity to a variety of therapeutic agents including kinase inhibitors. To test this hypothesis, we screened a large collection of well-characterized, small molecule kinase inhibitors for growth inhibition in a panel of TNBC cell lines representing all six subtypes. Sensitivity to kinase inhibition correlated poorly with TNBC subtype. Instead, unsupervised clustering segregated TNBC cell lines according to clinically relevant features including dependence on epidermal growth factor signaling and mutation of the PTEN tumor suppressor. We further report the discovery of kinase inhibitors with selective toxicity to these groups. Overall, however, TNBC cell lines exhibited diverse sensitivity to kinase inhibition consistent with the lack of common driver mutations in this disease. Although our findings support specific kinase dependencies in subsets of TNBC, they are not associated with gene expression-based subtypes. Instead, we find that mutation status can be an effective predictor of sensitivity to inhibition of particular kinase pathways for subsets of TNBC.


Assuntos
PTEN Fosfo-Hidrolase/genética , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/genética , Neoplasias de Mama Triplo Negativas/genética , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Mutação , Proteínas Quinases/metabolismo , Neoplasias de Mama Triplo Negativas/enzimologia
19.
J Med Chem ; 58(1): 466-79, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25478866

RESUMO

Structural coverage of the human kinome has been steadily increasing over time. The structures provide valuable insights into the molecular basis of kinase function and also provide a foundation for understanding the mechanisms of kinase inhibitors. There are a large number of kinase structures in the PDB for which the Asp and Phe of the DFG motif on the activation loop swap positions, resulting in the formation of a new allosteric pocket. We refer to these structures as "classical DFG-out" conformations in order to distinguish them from conformations that have also been referred to as DFG-out in the literature but that do not have a fully formed allosteric pocket. We have completed a structural analysis of almost 200 small molecule inhibitors bound to classical DFG-out conformations; we find that they are recognized by both type I and type II inhibitors. In contrast, we find that nonclassical DFG-out conformations strongly select against type II inhibitors because these structures have not formed a large enough allosteric pocket to accommodate this type of binding mode. In the course of this study we discovered that the number of structurally validated type II inhibitors that can be found in the PDB and that are also represented in publicly available biochemical profiling studies of kinase inhibitors is very small. We have obtained new profiling results for several additional structurally validated type II inhibitors identified through our conformational analysis. Although the available profiling data for type II inhibitors is still much smaller than for type I inhibitors, a comparison of the two data sets supports the conclusion that type II inhibitors are more selective than type I. We comment on the possible contribution of the DFG-in to DFG-out conformational reorganization to the selectivity.


Assuntos
Motivos de Aminoácidos , Conformação Proteica , Inibidores de Proteínas Quinases/química , Proteínas Quinases/química , Regulação Alostérica , Sítio Alostérico , Sequência de Aminoácidos , Biocatálise/efeitos dos fármacos , Bases de Dados de Proteínas , Humanos , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Estrutura Terciária de Proteína , Proteoma/antagonistas & inibidores , Proteoma/química , Proteoma/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia
20.
EMBO Rep ; 15(11): 1184-91, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25223282

RESUMO

The enzyme CTP synthase (CTPS) dynamically assembles into macromolecular filaments in bacteria, yeast, Drosophila, and mammalian cells, but the role of this morphological reorganization in regulating CTPS activity is controversial. During Drosophila oogenesis, CTPS filaments are transiently apparent in ovarian germline cells during a period of intense genomic endoreplication and stockpiling of ribosomal RNA. Here, we demonstrate that CTPS filaments are catalytically active and that their assembly is regulated by the non-receptor tyrosine kinase DAck, the Drosophila homologue of mammalian Ack1 (activated cdc42-associated kinase 1), which we find also localizes to CTPS filaments. Egg chambers from flies deficient in DAck or lacking DAck catalytic activity exhibit disrupted CTPS filament architecture and morphological defects that correlate with reduced fertility. Furthermore, ovaries from these flies exhibit reduced levels of total RNA, suggesting that DAck may regulate CTP synthase activity. These findings highlight an unexpected function for DAck and provide insight into a novel pathway for the developmental control of an essential metabolic pathway governing nucleotide biosynthesis.


Assuntos
Carbono-Nitrogênio Ligases/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila/metabolismo , Oogênese , Proteínas Tirosina Quinases/metabolismo , Animais , Carbono-Nitrogênio Ligases/genética , Drosophila/genética , Drosophila/fisiologia , Proteínas de Drosophila/genética , Feminino , Ovário/metabolismo , Transporte Proteico , Proteínas Tirosina Quinases/genética , RNA/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...