Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Commun Biol ; 6(1): 902, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37667032

RESUMO

High-quality reference genome assemblies, representative of global heterotic patterns, offer an ideal platform to accurately characterize and utilize genetic variation in the primary gene pool of hybrid crops. Here we report three platinum grade de-novo, near gap-free, chromosome-level reference genome assemblies from the active breeding germplasm in pearl millet with a high degree of contiguity, completeness, and accuracy. An improved Tift genome (Tift23D2B1-P1-P5) assembly has a contig N50 ~ 7,000-fold (126 Mb) compared to the previous version and better alignment in centromeric regions. Comparative genome analyses of these three lines clearly demonstrate a high level of collinearity and multiple structural variations, including inversions greater than 1 Mb. Differential genes in improved Tift genome are enriched for serine O-acetyltransferase and glycerol-3-phosphate metabolic process which play an important role in improving the nutritional quality of seed protein and disease resistance in plants, respectively. Multiple marker-trait associations are identified for a range of agronomic traits, including grain yield through genome-wide association study. Improved genome assemblies and marker resources developed in this study provide a comprehensive framework/platform for future applications such as marker-assisted selection of mono/oligogenic traits as well as whole-genome prediction and haplotype-based breeding of complex traits.


Assuntos
Pennisetum , Pennisetum/genética , Embaralhamento de DNA , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Agricultura
2.
BMC Genomics ; 22(1): 23, 2021 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-33407087

RESUMO

BACKGROUND: Three-dimensional chromatin loop structures connect regulatory elements to their target genes in regions known as anchors. In complex plant genomes, such as maize, it has been proposed that loops span heterochromatic regions marked by higher repeat content, but little is known on their spatial organization and genome-wide occurrence in relation to transcriptional activity. RESULTS: Here, ultra-deep Hi-C sequencing of maize B73 leaf tissue was combined with gene expression and open chromatin sequencing for chromatin loop discovery and correlation with hierarchical topologically-associating domains (TADs) and transcriptional activity. A majority of all anchors are shared between multiple loops from previous public maize high-resolution interactome datasets, suggesting a highly dynamic environment, with a conserved set of anchors involved in multiple interaction networks. Chromatin loop interiors are marked by higher repeat contents than the anchors flanking them. A small fraction of high-resolution interaction anchors, fully embedded in larger chromatin loops, co-locate with active genes and putative protein-binding sites. Combinatorial analyses indicate that all anchors studied here co-locate with at least 81.5% of expressed genes and 74% of open chromatin regions. Approximately 38% of all Hi-C chromatin loops are fully embedded within hierarchical TAD-like domains, while the remaining ones share anchors with domain boundaries or with distinct domains. Those various loop types exhibit specific patterns of overlap for open chromatin regions and expressed genes, but no apparent pattern of gene expression. In addition, up to 63% of all unique variants derived from a prior public maize eQTL dataset overlap with Hi-C loop anchors. Anchor annotation suggests that < 7% of all loops detected here are potentially devoid of any genes or regulatory elements. The overall organization of chromatin loop anchors in the maize genome suggest a loop modeling system hypothesized to resemble phase separation of repeat-rich regions. CONCLUSIONS: Sets of conserved chromatin loop anchors mapping to hierarchical domains contains core structural components of the gene expression machinery in maize. The data presented here will be a useful reference to further investigate their function in regard to the formation of transcriptional complexes and the regulation of transcriptional activity in the maize genome.


Assuntos
Cromatina , Zea mays , Cromatina/genética , Montagem e Desmontagem da Cromatina , Expressão Gênica , Genoma de Planta , Zea mays/genética
3.
Sci Rep ; 9(1): 6729, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-31040331

RESUMO

CRISPR-Cas9 enabled genome engineering has great potential for improving agriculture productivity, but the possibility of unintended off-target edits has evoked some concerns. Here we employ a three-step strategy to investigate Cas9 nuclease specificity in a complex plant genome. Our approach pairs computational prediction with genome-wide biochemical off-target detection followed by validation in maize plants. Our results reveal high frequency (up to 90%) on-target editing with no evidence of off-target cleavage activity when guide RNAs were bioinformatically predicted to be specific. Predictable off-target edits were observed but only with a promiscuous guide RNA intentionally designed to validate our approach. Off-target editing can be minimized by designing guide RNAs that are different from other genomic locations by at least three mismatches in combination with at least one mismatch occurring in the PAM proximal region. With well-designed guides, genetic variation from Cas9 off-target cleavage in plants is negligible, and much less than inherent variation.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Zea mays/genética , Proteína 9 Associada à CRISPR/genética , Biologia Computacional/métodos , Variação Genética , Genoma de Planta , Melhoramento Vegetal/métodos , Plantas Geneticamente Modificadas , RNA Guia de Cinetoplastídeos , Reprodutibilidade dos Testes
4.
Proc Natl Acad Sci U S A ; 103(39): 14560-5, 2006 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-16973745

RESUMO

Leptospirosis is one of the most common zoonotic diseases in the world, resulting in high morbidity and mortality in humans and affecting global livestock production. Most infections are caused by either Leptospira borgpetersenii or Leptospira interrogans, bacteria that vary in their distribution in nature and rely on different modes of transmission. We report the complete genomic sequences of two strains of L. borgpetersenii serovar Hardjo that have distinct phenotypes and virulence. These two strains have nearly identical genetic content, with subtle frameshift and point mutations being a common form of genetic variation. Starkly limited regions of synteny are shared between the large chromosomes of L. borgpetersenii and L. interrogans, probably the result of frequent recombination events between insertion sequences. The L. borgpetersenii genome is approximately 700 kb smaller and has a lower coding density than L. interrogans, indicating it is decaying through a process of insertion sequence-mediated genome reduction. Loss of gene function is not random but is centered on impairment of environmental sensing and metabolite transport and utilization. These features distinguish L. borgpetersenii from L. interrogans, a species with minimal genetic decay and that survives extended passage in aquatic environments encountering a mammalian host. We conclude that L. borgpetersenii is evolving toward dependence on a strict host-to-host transmission cycle.


Assuntos
Transmissão de Doença Infecciosa , Genoma Bacteriano/genética , Leptospira/genética , Animais , Proteínas de Bactérias/metabolismo , Bovinos , Cromossomos Bacterianos/genética , Elementos de DNA Transponíveis/genética , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos/genética , Genômica , Humanos , Leptospira/classificação , Leptospira/patogenicidade , Leptospira interrogans/genética , Proteínas de Membrana/metabolismo , Dados de Sequência Molecular , Replicon/genética , Virulência
5.
Vet Immunol Immunopathol ; 111(3-4): 149-64, 2006 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-16430970

RESUMO

Neutrophils play an important role in the host immune system's defense against pathogens. It has been established that neutrophil functionality is suppressed in dairy cows at parturition. The periparturient immunosuppression seen in dairy cattle is associated with an increase in the incidence of mastitis. Using amine-reactive isobaric tagging reagents we have measured relative protein expression from normal prepartum neutrophils and neutrophils isolated during immunosuppression at parturition. We found over 40 proteins that are differentially expressed at parturition compared to prepartum. In addition, we measured relative protein expression from normal neutrophils and neutrophils obtained from cows treated with an immunosuppressive dose of dexamethasone. We found over 70 proteins are differentially expressed during dexamethasone treatment. We then compared protein expression changes in dexamethasone-induced immunosuppression to periparturient immunosuppression. A number of proteins underwent similar expression changes in both dexamethasone and periparturient immunosuppressed neutrophils. Most significantly, we found a significant number of proteins whose relative expression was not the same for these two different conditions that cause neutrophil dysfunction. The data demonstrates that there are both similarities and differences in neutrophil protein expression in the naturally occurring immunosuppression observed at parturition compared to dexamethasone-induced immunosuppression in the bovine neutrophil.


Assuntos
Dexametasona/farmacologia , Mastite Bovina/imunologia , Neutrófilos/imunologia , Período Pós-Parto/imunologia , Animais , Western Blotting/veterinária , Bovinos , Feminino , Hospedeiro Imunocomprometido , Espectrometria de Massas/veterinária , Mastite Bovina/metabolismo , Neutrófilos/metabolismo , Período Pós-Parto/metabolismo , Gravidez , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/imunologia
6.
J Bacteriol ; 187(8): 2715-26, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15805518

RESUMO

Brucellosis is a worldwide disease of humans and livestock that is caused by a number of very closely related classical Brucella species in the alpha-2 subdivision of the Proteobacteria. We report the complete genome sequence of Brucella abortus field isolate 9-941 and compare it to those of Brucella suis 1330 and Brucella melitensis 16 M. The genomes of these Brucella species are strikingly similar, with nearly identical genetic content and gene organization. However, a number of insertion-deletion events and several polymorphic regions encoding putative outer membrane proteins were identified among the genomes. Several fragments previously identified as unique to either B. suis or B. melitensis were present in the B. abortus genome. Even though several fragments were shared between only B. abortus and B. suis, B. abortus shared more fragments and had fewer nucleotide polymorphisms with B. melitensis than B. suis. The complete genomic sequence of B. abortus provides an important resource for further investigations into determinants of the pathogenicity and virulence phenotypes of these bacteria.


Assuntos
Brucella abortus/genética , Genoma Bacteriano , Genômica , Proteínas de Bactérias/genética , Brucella melitensis/genética , Brucella suis/genética , DNA Bacteriano/análise , Dados de Sequência Molecular , Filogenia
7.
Genome Biol ; 5(10): R78, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15461796

RESUMO

BACKGROUND: Retrotransposons are an abundant component of eukaryotic genomes. The high quality of the Arabidopsis thaliana genome sequence makes it possible to comprehensively characterize retroelement populations and explore factors that contribute to their genomic distribution. RESULTS: We identified the full complement of A. thaliana long terminal repeat (LTR) retroelements using RetroMap, a software tool that iteratively searches genome sequences for reverse transcriptases and then defines retroelement insertions. Relative ages of full-length elements were estimated by assessing sequence divergence between LTRs: the Pseudoviridae were significantly younger than the Metaviridae. All retroelement insertions were mapped onto the genome sequence and their distribution was distinctly non-uniform. Although both Pseudoviridae and Metaviridae tend to cluster within pericentromeric heterochromatin, this association is significantly more pronounced for all three Metaviridae sublineages (Metavirus, Tat and Athila). Among these, Tat and Athila are strictly associated with pericentromeric heterochromatin. CONCLUSIONS: The non-uniform genomic distribution of the Pseudoviridae and the Metaviridae can be explained by a variety of factors including target-site bias, selection against integration into euchromatin and pericentromeric accumulation of elements as a result of suppression of recombination. However, comparisons based on the age of elements and their chromosomal location indicate that integration-site specificity is likely to be the primary factor determining distribution of the Athila and Tat sublineages of the Metaviridae. We predict that, like retroelements in yeast, the Athila and Tat elements target integration to pericentromeric regions by recognizing a specific feature of pericentromeric heterochromatin.


Assuntos
Arabidopsis/genética , Arabidopsis/virologia , Genômica , Vírus de Plantas/genética , Retroelementos/genética , Integração Viral/genética , Cromossomos de Plantas/genética , Biologia Computacional , Marcação de Genes , Modelos Genéticos , Mutagênese Insercional/genética , Sequências Repetidas Terminais/genética , Fatores de Tempo
8.
Mol Biol Evol ; 19(11): 1832-45, 2002 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-12411593

RESUMO

A comprehensive survey of the Pseudoviridae (Ty1/copia) retroelement family was conducted using the GenBank sequence database and completed genome sequences of several model organisms. Plant genomes were the most abundant sources of Pseudoviridae, with the Arabidopsis thaliana genome having 276 distinct elements. A reverse transcriptase amino acid sequence phylogeny indicated that the Pseudoviridae comprises highly divergent members. Coding sequences for a representative subset of elements were analyzed to identify conserved domains and differences that may underlie functional divergence. With the exception of some fungal elements (e.g., Ty1), most Pseudoviridae encode Gag and Pol on a single open reading frame. In addition to the nearly ubiquitous RNA-binding motif of nucleocapsid, three new conserved domains were identified in Gag. pol-encoded aspartic protease was similar to the retroviral enzyme and could be mapped onto the HIV-1 structure. Pol was highly conserved throughout the family. The greatest divergence among Pol sequences was seen in the C-terminus of integrase (IN). We defined a large motif (GKGY) after the IN catalytic domain that is unique to the Pseudoviridae. Additionally, the extreme C-terminus of IN is rich in simple sequence motifs. A distinct lineage of Pseudoviridae in plants have envlike genes. This lineage has undergone a large expansion of Gag characterized by an alpha-helix-rich domain containing coiled-coil motifs. In several elements, this domain is flanked on both sides by RNA-binding domains. We propose that this monophyletic lineage defines a new Pseudoviridae genus, herein referred to as the AGROVIRUS:


Assuntos
Genes Virais/genética , Retroelementos/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Evolução Molecular , Genes gag/genética , Genes pol/genética , Modelos Moleculares , Dados de Sequência Molecular , Filogenia , Conformação Proteica , Proteínas Virais/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...