Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Br J Haematol ; 107(2): 294-9, 1999 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-10583214

RESUMO

Retinoids have been shown to modulate several functions of mononuclear phagocytes. We investigated the in vitro effect of all-trans-retinoic acid (ATRA) on the production of two major fibrinolytic components, urokinase-type plasminogen activator (u-PA) and PA inhibitor 2 (PAI-2), by human blood mononuclear cells (MNC). ATRA caused a dose-dependent (range 0.01-10 microM) accumulation of PAI-2 antigen and activity into the cell culture medium, with a maximal increase (about 5-fold over control) at a concentration of 1-10 microM. Similarly, a dose-dependent increase in PAI-2 antigen was observed in cell extracts upon ATRA stimulation. Northern blot analysis showed a parallel increase in the amount of PAI-2 mRNA in ATRA-treated cells. Time-course experiments with 1 microM ATRA showed enhanced PAI-2 mRNA expression as early as 2 h, reaching a maximum at 4-6 h and then declining at 18-24 h, and a time-dependent increase in PAI-2 antigen in the cell culture medium. At variance with PAI-2, u-PA was not influenced by the drug. To establish whether ATRA-induced changes influenced the fibrinolytic process, we evaluated the effect of MNC stimulated with ATRA on u-PA-induced degradation of diluted plasma clots. ATRA-treated cells markedly inhibited clot lysis induced by low concentrations of u-PA. The effect was due to enhanced extracellular PAI-2 accumulation since it was observed with conditioned medium from ATRA-treated cells; it was abolished by the addition of neutralizing anti-PAI-2 antibodies and was negligible when single-chain t-PA was used instead of u-PA. Since monocyte/macrophage-mediated, plasminogen-dependent extracellular proteolysis has been proposed as an important mechanism of tissue damage in several inflammatory states, our findings might contribute to better explain the anti-inflammatory properties of retinoids.


Assuntos
Leucócitos Mononucleares/metabolismo , Inibidor 2 de Ativador de Plasminogênio/biossíntese , Tretinoína/farmacologia , Ativador de Plasminogênio Tipo Uroquinase/biossíntese , Northern Blotting , Fibrinólise/efeitos dos fármacos , Fibrinólise/fisiologia , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Fatores de Tempo
2.
Thromb Haemost ; 80(3): 403-6, 1998 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-9759618

RESUMO

Pseudo-homozygous APC resistance, the condition resulting from compound heterozygosity for FV R506Q (FV Leiden) and quantitative FV deficiency, provides a natural model to study the interaction between procoagulant and anticoagulant defects. This paper reports a complete FV characterization of a pseudo-homozygous APC resistant thrombotic patient. The expression of the patient's non-Leiden gene was found to be severely impaired both at the mRNA and protein levels. In particular, only FV Leiden molecules were detected in the patient's plasma by immunoblotting, which accounts for the observed marked APC resistance. Analysis of the FV cDNA obtained by reverse transcription of platelet RNA revealed that the mRNA of the non-Leiden gene was extremely reduced in amount. A PAC clone containing the whole FV gene was used to design primers for a complete FV exon scanning. A 2-bp insertion at nucleotide 3706 in the large exon 13 of the non-Leiden gene, predicting a frame-shift and premature termination of protein synthesis, was identified as responsible for the FV defect. Failure to find any case of pseudo-homozygous APC resistance in a large sample (6,804) of blood donors suggests that this condition is extremely rare among normal controls and that its detection is favoured by the thrombotic risk that it may confer.


Assuntos
Resistência a Medicamentos/genética , Fator V/genética , Mutação , Proteína C/farmacologia , Idoso , Feminino , Heterozigoto , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...