Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35682718

RESUMO

IDH (isocitrate dehydrogenase) mutation, hypoxia, and neo-angiogenesis, three hallmarks of diffuse gliomas, modulate the expression of small non-coding RNAs (miRNA). In this paper, we tested whether pro-angiogenic and/or pro-hypoxic miRNAs could be used to monitor patients with glioma. The miRNAs were extracted from tumoral surgical specimens embedded in the paraffin of 97 patients with diffuse gliomas and, for 7 patients, from a blood sample too. The expression of 10 pro-angiogenic and/or pro-hypoxic miRNAs was assayed by qRT-PCR and normalized to the miRNA expression of non-tumoral brain tissues. We confirmed in vitro that IDH in hypoxia (1% O2, 24 h) alters pro-angiogenic and/or pro-hypoxic miRNA expression in HBT-14 (U-87 MG) cells. Then, we reported that the expression of these miRNAs is (i) strongly affected in patients with glioma compared to that in a non-tumoral brain; (ii) correlated with the histology/grade of glioma according to the 2016 WHO classification; and (iii) predicts the overall and/or progression-free survival of patients with glioma in univariate but not in a multivariate analysis after adjusting for sex, age at diagnosis, and WHO classification. Finally, the expression of miRNAs was found to be the same between the plasma and glial tumor of the same patient. This study highlights a panel of seven pro-angiogenic and/or pro-hypoxic miRNAs as a potential tool for monitoring patients with glioma.


Assuntos
Neoplasias Encefálicas , Glioma , MicroRNAs , Neoplasias Encefálicas/metabolismo , Glioma/diagnóstico , Glioma/genética , Glioma/metabolismo , Humanos , Hipóxia/genética , Isocitrato Desidrogenase/genética , MicroRNAs/genética , Mutação
2.
Cancers (Basel) ; 12(12)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266255

RESUMO

(1) We wanted to assess the impact of Ang2 in RCT-induced changes in the environment of glioblastoma. (2) The effect of Ang2 overexpression in tumor cells was studied in the GL261 syngeneic immunocompetent model of GB in response to fractionated RCT. (3) We showed that RCT combined with Ang2 led to tumor clearance for the GL261-Ang2 group by acting on the tumor cells as well as on both vascular and immune compartments. (4) In vitro, Ang2 overexpression in GL261 cells exposed to RCT promoted senescence and induced robust genomic instability, leading to mitotic death. (5) Coculture experiments of GL261-Ang2 cells with RAW 264.7 cells resulted in a significant increase in macrophage migration, which was abrogated by the addition of soluble Tie2 receptor. (6) Together, these preclinical results showed that, combined with RCT, Ang2 acted in an autocrine manner by increasing GB cell senescence and in a paracrine manner by acting on the innate immune system while modulating the vascular tumor compartment. On this preclinical model, we found that an ectopic expression of Ang2 combined with RCT impedes tumor recurrence.

3.
Biomaterials ; 257: 120249, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32739663

RESUMO

Approaches able to counteract, at least temporarily, hypoxia, a well-known factor of resistance to treatment in solid tumors are highly desirable. Herein, we report the use of nanosized zeolite crystals as hyperoxic/hypercapnic gas carriers for glioblastoma. First, the non-toxic profile of nanosized zeolite crystals in living animals (mice, rats and non-human primates) and in various cell types is presented. Second, the ability of the nanosized zeolites to act as a vasoactive agent for a targeted re-oxygenation of the tumor after intravenous injection is shown. As attested by an MRI protocol, the zeolites were able to increase oxygenation and blood volume specifically within the brain tumor whilst no changes in the healthy-non tumoral brain-were observed. The first proof of concept for the use of metal-containing nanosized zeolites as a tool for vectorization of hyperoxic/hypercapnic gases in glioblastoma is revealed.


Assuntos
Glioblastoma , Zeolitas , Animais , Gases , Imageamento por Ressonância Magnética , Camundongos , Ratos
4.
Cancers (Basel) ; 12(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32718037

RESUMO

Tumor hypoxia is known to limit the efficacy of ionizing radiations, a concept called oxygen enhancement ratio (OER). OER depends on physical factors such as pO2 and linear energy transfer (LET). Biological pathways, such as the hypoxia-inducible transcription factors (HIF), might also modulate the influence of LET on OER. Glioblastoma (GB) is resistant to low-LET radiation (X-rays), due in part to the hypoxic environment in this brain tumor. Here, we aim to evaluate in vitro whether high-LET particles, especially carbon ion radiotherapy (CIRT), can overcome the contribution of hypoxia to radioresistance, and whether HIF-dependent genes, such as erythropoietin (EPO), influence GB sensitivity to CIRT. Hypoxia-induced radioresistance was studied in two human GB cells (U251, GL15) exposed to X-rays or to carbon ion beams with various LET (28, 50, 100 keV/µm), and in genetically-modified GB cells with downregulated EPO signaling. Cell survival, radiobiological parameters, cell cycle, and ERK activation were assessed under those conditions. The results demonstrate that, although CIRT is more efficient than X-rays in GB cells, hypoxia can limit CIRT efficacy in a cell-type manner that may involve differences in ERK activation. Using high-LET carbon beams, or targeting hypoxia-dependent genes such as EPO might reduce the effects of hypoxia.

5.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-31878191

RESUMO

The resistance of cancer cells to radiotherapy is a major issue in the curative treatment of cancer patients. This resistance can be intrinsic or acquired after irradiation and has various definitions, depending on the endpoint that is chosen in assessing the response to radiation. This phenomenon might be strengthened by the radiosensitivity of surrounding healthy tissues. Sensitive organs near the tumor that is to be treated can be affected by direct irradiation or experience nontargeted reactions, leading to early or late effects that disrupt the quality of life of patients. For several decades, new modalities of irradiation that involve accelerated particles have been available, such as proton therapy and carbon therapy, raising the possibility of specifically targeting the tumor volume. The goal of this review is to examine the up-to-date radiobiological and clinical aspects of hadrontherapy, a discipline that is maturing, with promising applications. We first describe the physical and biological advantages of particles and their application in cancer treatment. The contribution of the microenvironment and surrounding healthy tissues to tumor radioresistance is then discussed, in relation to imaging and accurate visualization of potentially resistant hypoxic areas using dedicated markers, to identify patients and tumors that could benefit from hadrontherapy over conventional irradiation. Finally, we consider combined treatment strategies to improve the particle therapy of radioresistant cancers.


Assuntos
Neoplasias/radioterapia , Radioterapia/métodos , Humanos , Hipóxia , Terapia com Prótons
6.
Oncotarget ; 8(42): 72597-72612, 2017 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-29069812

RESUMO

In some highly inflammatory tumors, such as glioblastoma (GB), macrophages (MΦ) represent the most abundant population of reactive cells. MΦ, initially denoted as M0 MΦ, can be polarized into two further phenotypes: the antitumor M1 MΦ, and the protumor M2 MΦ. The three phenotypes can reside simultaneously in the tumor mass and various external factors may influence MΦ polarization. Radiotherapy is a common modality of cancer treatment aiming to target tumor cells. However, the specific effects of X-ray radiation on the inflammatory cells are, so far, controversial and not fully understood. In the present investigation, we have first analyzed, in vivo, the effect of X-ray radiation on MΦ present in GB tumors. We have observed a decrease in MΦ number paralleled by an increase in the proportion of M2 MΦ. To understand this phenomenon, we then evaluated, in vitro, the effects of X-rays on the MΦ phenotypes and survival. We have found that X-ray radiation failed to modify the phenotype of the different MΦ. However, M1 MΦ were more sensitive to ionizing radiation than M2 MΦ, both in normoxia and in hypoxia, which could explain the in vivo observations. To conclude, M2 MΦ are more radioresistant than M0 and M1 MΦ and the present study allows us to propose that X-ray radiotherapy could contribute, along with other phenomena, to the increased density in the protumor M2 MΦ in GB.

7.
Sci Rep ; 7(1): 10210, 2017 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-28860608

RESUMO

Quantitative imaging modalities for the analysis of hypoxia in brain tumors are lacking. The objective of this study was to generate absolute maps of tissue ptO2 from [18F]-FMISO images in glioblastoma and less aggressive glioma patients in order to quantitatively assess tumor hypoxia. An ancillary objective was to compare estimated ptO2 values to other biomarkers: perfusion weighted imaging (PWI) and tumor metabolism obtained from 1H-MR mono-voxel spectroscopy (MRS). Ten patients with glioblastoma (GBM) and three patients with less aggressive glioma (nGBM) were enrolled. All patients had [18F]-FMISO and multiparametric MRI (anatomic, PWI, MRS) scans. A non-linear regression was performed to generate ptO2 maps based on normal appearing gray (NAGM) and white matter (NAWM) for each patient. As expected, a marked [18F]-FMISO uptake was observed in GBM patients. The ptO2 based on patient specific calculations was notably low in this group (4.8 ± 1.9 mmHg, p < 0.001) compared to all other groups (nGBM, NAGM and NAWM). The rCBV was increased in GBM (1.4 ± 0.2 when compared to nGBM tumors 0.8 ± 0.4). Lactate (and lipid) concentration increased in GBM (27.8 ± 13.8%) relative to nGBM (p < 0.01). Linear, nonlinear and ROC curve analyses between ptO2 maps, PWI-derived rCBV maps and MRS-derived lipid and lactate concentration strengthens the robustness of our approaches.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Hipóxia Encefálica/diagnóstico por imagem , Misonidazol/análogos & derivados , Adulto , Idoso , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Masculino , Pessoa de Meia-Idade , Misonidazol/administração & dosagem , Imagem de Perfusão , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Estudos Prospectivos , Curva ROC , Substância Branca/diagnóstico por imagem
8.
Eur J Nucl Med Mol Imaging ; 44(8): 1383-1392, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28315948

RESUMO

PURPOSE: Hypoxia in gliomas is associated with tumor resistance to radio- and chemotherapy. However, positron emission tomography (PET) imaging of hypoxia remains challenging, and the validation of biological markers is, therefore, of great importance. We investigated the relationship between uptake of the PET hypoxia tracer [18F]-FMISO and other markers of hypoxia and angiogenesis and with patient survival. PATIENTS AND METHODS: In this prospective single center clinical study, 33 glioma patients (grade IV: n = 24, III: n = 3, and II: n = 6) underwent [18F]-FMISO PET and MRI including relative cerebral blood volume (rCBV) maps before surgery. Maximum standardized uptake values (SUVmax) and hypoxic volume were calculated, defining two groups of patients based on the presence or absence of [18F]-FMISO uptake. After surgery, molecular quantification of CAIX, VEGF, Ang2 (rt-qPCR), and HIF-1α (immunohistochemistry) were performed on tumor specimens. RESULTS: [18F]-FMISO PET uptake was closely linked to tumor grade, with high uptake in glioblastomas (GB, grade IV). Expression of biomarkers of hypoxia (CAIX, HIF-1α), and angiogenesis markers (VEGF, Ang2, rCBV) were significantly higher in the [18F]-FMISO uptake group. We found correlations between the degree of hypoxia (hypoxic volume and SUVmax) and expression of HIF-1α, CAIX, VEGF, Ang2, and rCBV (p < 0.01). Patients without [18F]-FMISO uptake had a longer survival time than uptake positive patients (log-rank, p < 0.005). CONCLUSIONS: Tumor hypoxia as evaluated by [18F]-FMISO PET is associated with the expression of hypoxia markers on a molecular level and is related to angiogenesis. [18F]-FMISO uptake is a mark of an aggressive tumor, almost always a glioblastoma. Our results underline that [18F]-FMISO PET could be useful to guide glioma treatment, and in particular radiotherapy, since hypoxia is a well-known factor of resistance.


Assuntos
Biomarcadores Tumorais/metabolismo , Glioma/diagnóstico por imagem , Glioma/cirurgia , Misonidazol/análogos & derivados , Neovascularização Patológica/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Hipóxia Tumoral , Adulto , Idoso , Idoso de 80 Anos ou mais , Transporte Biológico , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/fisiopatologia , Neoplasias Encefálicas/cirurgia , Volume Sanguíneo Cerebral , Intervalo Livre de Doença , Feminino , Glioma/patologia , Glioma/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Misonidazol/metabolismo , Radiocirurgia
9.
J Cereb Blood Flow Metab ; 37(7): 2584-2597, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27702880

RESUMO

The partial pressure in oxygen remains challenging to map in the brain. Two main strategies exist to obtain surrogate measures of tissue oxygenation: the tissue saturation studied by magnetic resonance imaging (StO2-MRI) and the identification of hypoxia by a positron emission tomography (PET) biomarker with 3-[18F]fluoro-1-(2-nitro-1-imidazolyl)-2-propanol ([18F]-FMISO) as the leading radiopharmaceutical. Nonetheless, a formal validation of StO2-MRI against FMISO-PET has not been performed. The objective of our studies was to compare the two approaches in (a) the normal rat brain when the rats were submitted to hypoxemia; (b) animals implanted with four tumour types differentiated by their oxygenation. Rats were submitted to normoxic and hypoxemic conditions. For the brain tumour experiments, U87-MG, U251-MG, 9L and C6 glioma cells were orthotopically inoculated in rats. For both experiments, StO2-MRI and [18F]-FMISO PET were performed sequentially. Under hypoxemia conditions, StO2-MRI revealed a decrease in oxygen saturation in the brain. Nonetheless, [18F]-FMISO PET, pimonidazole immunohistochemistry and molecular biology were insensitive to hypoxia. Within the context of tumours, StO2-MRI was able to detect hypoxia in the hypoxic models, mimicking [18F]-FMISO PET with high sensitivity/specificity. Altogether, our data clearly support that, in brain pathologies, StO2-MRI could be a robust and specific imaging biomarker to assess hypoxia.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Encéfalo/irrigação sanguínea , Glioma/diagnóstico por imagem , Hipóxia Encefálica/diagnóstico por imagem , Oxigênio/sangue , Animais , Encéfalo/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Circulação Cerebrovascular/fisiologia , Glioma/metabolismo , Glioma/patologia , Hipóxia Encefálica/metabolismo , Imageamento por Ressonância Magnética , Masculino , Transplante de Neoplasias , Tomografia por Emissão de Pósitrons , Ratos Endogâmicos F344 , Ratos Nus , Ratos Wistar
10.
J Cereb Blood Flow Metab ; 37(6): 2270-2282, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27496553

RESUMO

The alleviation of hypoxia in glioblastoma with carbogen to improve treatment has met with limited success. Our hypothesis is that the eventual benefits of carbogen depend on the capacity for vasodilation. We examined, with MRI, changes in fractional cerebral blood volume, blood oxygen saturation, and blood oxygenation level dependent signals in response to carbogen. The analyses were performed in two xenograft models of glioma (U87 and U251) recognized to have different vascular patterns. Carbogen increased fractional cerebral blood volume, blood oxygen saturation, and blood oxygenation level dependent signals in contralateral tissues. In the tumor core and peritumoral regions, changes were dependent on the capacity to vasodilate rather than on resting fractional cerebral blood volume. In the highly vascularised U87 tumor, carbogen induced a greater increase in fractional cerebral blood volume and blood oxygen saturation in comparison to the less vascularized U251 tumor. The blood oxygenation level dependent signal revealed a delayed response in U251 tumors relative to the contralateral tissue. Additionally, we highlight the considerable heterogeneity of fractional cerebral blood volume, blood oxygen saturation, and blood oxygenation level dependent within U251 tumor in which multiple compartments co-exist (tumor core, rim and peritumoral regions). Finally, our study underlines the complexity of the flow/metabolism interactions in different models of glioblastoma. These irregularities should be taken into account in order to palliate intratumoral hypoxia in clinical trials.


Assuntos
Neoplasias Encefálicas/irrigação sanguínea , Dióxido de Carbono/farmacologia , Circulação Cerebrovascular/efeitos dos fármacos , Glioblastoma/irrigação sanguínea , Imageamento por Ressonância Magnética/métodos , Oxigênio/sangue , Animais , Neoplasias Encefálicas/diagnóstico por imagem , Dióxido de Carbono/administração & dosagem , Glioblastoma/diagnóstico por imagem , Humanos , Oxigênio/administração & dosagem , Oxigênio/farmacologia , Ratos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Oncoimmunology ; 5(1): e1056442, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26942063

RESUMO

Hypoxia is a common feature of solid tumors, particularly in glioblastoma (GBM), and known to be a poor prognosis factor in GBM patients. The growth of GBM is also associated with a marked inflammation partially characterized by an accumulation of macrophage (MΦ) of the M2 phenotype. However, the transition between M1 MΦ (antitumoral) and M2 MΦ (protumoral) phenotypes is a dynamic process. We made the assumption that oxygen (O2) availability could be a major regulator of this transition and that the intratumoral O2 gradient is of importance. We evaluated, in vivo, the impact of hypoxia on MΦ tropism and polarization in two models of human GBM, well differentiated by their degree of hypoxia. MΦ migration in the tumor was more pronounced in the more hypoxic tumor of the two GBM models. In the more hypoxic of the models, we have shown that MΦ migrated at the tumor site only when hypoxia takes place. We also demonstrated that the acquisition of the M2 phenotype was clearly an evolving phenomenon with hypoxia as the major trigger for this transition. In support of these in vivo finding, M0 but also M1 MΦ cultured in moderate or severe hypoxia displayed a phenotype close to that of M2 MΦ whose phenotype was further reinforced by severe hypoxia. These results highlight the role of hypoxia in the aggressiveness of GBM, in part, by transforming MΦ such that a protumoral activity is expressed.

12.
Eur J Nucl Med Mol Imaging ; 43(4): 682-94, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26537287

RESUMO

PURPOSE: The primary objective of this study was to compare the ability of PET and MRI biomarkers to predict treatment efficacy in a preclinical model of recurrent glioblastoma multiforme. METHODS: MRI (anatomical, diffusion, vasculature and oxygenation) and PET ([(18)F]FDG and [(18)F]FLT) parameters were obtained 3 days after the end of treatment and compared with late tumour growth and survival. RESULTS: Early after tumour recurrence, no effect of treatment with temozolomide combined with bevacizumab was observed on tumour volume as assessed by T2-W MRI. At later times, the treatment decreased tumour volume and increased survival. Interestingly, at the earlier time, temozolomide + bevacizumab decreased [(18)F]FLT uptake, cerebral blood volume and oedema. [(18)F]FLT uptake, oedema and cerebral blood volume were correlated with overall survival but [(18)F]FLT uptake had the highest specificity and sensitivity for the early prediction of treatment efficacy. CONCLUSION: The present investigation in a preclinical model of glioblastoma recurrence underscores the importance of multimodal imaging in the assessment of oedema, tumour vascular status and cell proliferation. Finally, [(18)F]FLT holds the greatest promise for the early assessment of treatment efficacy. These findings may translate clinically in that individualized treatment for recurrent glioma could be prescribed for patients selected after PET/MRI examinations.


Assuntos
Neoplasias Encefálicas/diagnóstico por imagem , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Imagem Multimodal , Tomografia por Emissão de Pósitrons , Animais , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Didesoxinucleosídeos , Glioblastoma/diagnóstico , Glioblastoma/tratamento farmacológico , Humanos , Masculino , Compostos Radiofarmacêuticos , Ratos
13.
Front Med (Lausanne) ; 2: 57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26347870

RESUMO

Hypoxia, the result of an inadequacy between a disorganized and functionally impaired vasculature and the metabolic demand of tumor cells, is a feature of glioblastoma. Hypoxia promotes the aggressiveness of these tumors and, equally, negatively correlates with a decrease in outcome. Tools to characterize oxygen status are essential for the therapeutic management of patients with glioblastoma (i) to refine prognosis, (ii) to adapt the treatment regimen, and (iii) to assess the therapeutic efficacy. While methods that are focal and invasive in nature are of limited use, non-invasive imaging technologies have been developed. Each of these technologies is characterized by its singular advantages and limitations in terms of oxygenation status in glioblastoma. The aim of this short review is, first, to focus on the interest to characterize hypoxia for a better therapeutic management of patients and, second, to discuss recent and pertinent approaches for the assessment of oxygenation/hypoxia and their direct implication for patient care.

14.
Hypertens Res ; 38(11): 723-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26084262

RESUMO

Glioblastoma is the most aggressive brain tumor and is almost always fatal. These tumors are highly vascularized and angiogenesis is one of the pre-eminent mechanisms underlying their growth. Chronic arterial hypertension (CAH) is a common and worldwide pathology that markedlly alters the structure and function of the vasculature. Yet, essential hypertension is associated in the brain with potential locally impaired vasoreactivity, disturbed perfusion supply and hypoxia phenomena. Even though CAH is a global burden and has an important impact on brain function, nothing is known about the way this frequent pathology would interact with the evolution of glioma. We sought to determine if arterial hypertension influences gliobastoma growth. In the present study, rat glioma C6 tumor cells were implanted in the caudate-putamen of spontaneously hypertensive rats (SHR) or their normotensive controls, the Wistar-Kyoto (WKY) rats. The evolution of the tumor was sequentially analyzed by multiparametric magnetic resonance imaging and the inflammatory response was examined by histochemistry. We found that CAH significantly attenuates the growth of the tumor as, at 21 days, the volume of the tumor was 85.4±34.7 and 126.1±28.8 mm(3), respectively, in hypertensive and normotensive rats (P<0.02). Moreover, cerebral blood volume and cerebral blood flow were greater in the tumors of hypertensive rats (P<0.05). The lesser growth of the tumor observed in normotensive animals was not due to an enhanced rejection of the tumor cells in WKY rats, the inflammatory response being similar in both groups. For the first time, these results show that CAH impedes the growth of glioblastoma and illustrate the need to further study the impact of hypertension on the evolution of brain tumors.


Assuntos
Neoplasias Encefálicas/patologia , Encéfalo/patologia , Glioblastoma/patologia , Hipertensão/complicações , Animais , Pressão Arterial , Peso Corporal , Neoplasias Encefálicas/irrigação sanguínea , Neoplasias Encefálicas/etiologia , Glioblastoma/irrigação sanguínea , Glioblastoma/etiologia , Imageamento por Ressonância Magnética , Masculino , Distribuição Aleatória , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY
15.
Oncotarget ; 6(4): 2101-19, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25544764

RESUMO

Hypoxia-inducible genes may contribute to therapy resistance in glioblastoma (GBM), the most aggressive and hypoxic brain tumours. It has been recently reported that erythropoietin (EPO) and its receptor (EPOR) are involved in glioma growth. We now investigated whether EPOR signalling may modulate the efficacy of the GBM current treatment based on chemotherapy (temozolomide, TMZ) and radiotherapy (X-rays). Using RNA interference, we showed on glioma cell lines (U87 and U251) that EPOR silencing induces a G2/M cell cycle arrest, consistent with the slowdown of glioma growth induced by EPOR knock-down. In vivo, we also reported that EPOR silencing combined with TMZ treatment is more efficient to delay tumour recurrence and to prolong animal survival compared to TMZ alone. In vitro, we showed that EPOR silencing not only increases the sensitivity of glioma cells to TMZ as well as X-rays but also counteracts the hypoxia-induced chemo- and radioresistance. Silencing EPOR on glioma cells exposed to conventional treatments enhances senescence and induces a robust genomic instability that leads to caspase-dependent mitotic death by increasing the number of polyploid cells and cyclin B1 expression. Overall these data suggest that EPOR could be an attractive target to overcome therapeutic resistance toward ionising radiation or temozolomide.


Assuntos
Neoplasias Encefálicas/terapia , Dacarbazina/análogos & derivados , Glioma/terapia , Receptores da Eritropoetina/metabolismo , Animais , Antineoplásicos Alquilantes/farmacologia , Western Blotting , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos da radiação , Hipóxia Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Senescência Celular/efeitos dos fármacos , Senescência Celular/efeitos da radiação , Quimiorradioterapia , Ciclina B1/metabolismo , Dacarbazina/farmacologia , Glioma/genética , Glioma/metabolismo , Humanos , Imuno-Histoquímica , Masculino , Camundongos Nus , Mitose/efeitos dos fármacos , Mitose/efeitos da radiação , Poliploidia , Interferência de RNA , Terapêutica com RNAi , Receptores da Eritropoetina/genética , Temozolomida , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Invest Ophthalmol Vis Sci ; 55(3): 1277-83, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24481264

RESUMO

PURPOSE: Overexpression of hypoxia inducible factor-1 α (HIF-1α) has been found in several cancers and is thought to correlate with aggressive disease. The purpose of our study was to investigate the influence of HIF-1α on clinical outcome in uveal melanoma (UM) along with proliferative (MIB-1) and vascular (CD31, VEGF-A) markers. METHODS: A retrospective analysis was carried out on UM tumors from 88 patients. HIF-1α, MIB-1, CD31, and VEGF-A expression, as well as necrosis, were assessed by immunohistochemistry and hematoxylin/eosin on paraffin-embedded UM tumor sections by using a tissue microarray. The bivariate analysis involving HIF-1α expression and clinicopathologic covariates was performed by using the χ(2) test. The association of clinicopathologic covariates and HIF-1α expression with patient survival was evaluated by using the Kaplan-Meier approach and Cox proportional-hazards regression analysis. RESULTS: Among our study population, 56 patients (63.6%) had high levels of HIF-1α expression. High expression of HIF-1α was associated with high expression of MIB-1 (P = 0.04), CD31 (P = 0.03), and VEGF-A (P < 0.0001), as well as necrosis (P = 0.04). However, high HIF-1α expression was not correlated with cell type, largest macroscopic tumor dimension or thickness, anterior margin, pigmentation, or mitotic figures. Patients with high HIF-1α expression did not show a reduced survival when compared to patients with low HIF-1α expression (P = 0.92). Finally, HIF-1α expression was not increased after irradiation. CONCLUSIONS: An increase in HIF-1α expression was significantly associated with proliferative (MIB-1) and vascular (CD31 and VEGF-A) markers, as well as necrosis, in UM. However, there was no correlation between high HIF-1α expression and patient survival.


Assuntos
Proliferação de Células , Subunidade alfa do Fator 1 Induzível por Hipóxia/biossíntese , Melanoma/metabolismo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Neoplasias Uveais/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Imuno-Histoquímica , Masculino , Melanoma/patologia , Pessoa de Meia-Idade , Prognóstico , Estudos Retrospectivos , Análise Serial de Tecidos , Neoplasias Uveais/patologia , Adulto Jovem
17.
Rev Infirm ; (195): 23-4, 2013 Nov.
Artigo em Francês | MEDLINE | ID: mdl-24303666

RESUMO

A restructuring of the emergency department of Kremlin Bicêtre University Hospital presented an opportunity for a multi-disciplinary discussion to consider new nursing practices. As a result, people admitted to the emergency department can benefit from greater privacy and maintain their dignity despite the "usual saturation" of the department.


Assuntos
Serviço Hospitalar de Emergência , Pessoalidade , Confidencialidade , Humanos , Admissão do Paciente , Autonomia Pessoal
18.
Methods Mol Biol ; 982: 79-101, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23456863

RESUMO

Animal models constitute an indispensable tool to investigate human pathology. Here we describe the procedure to induce permanent and transient cerebral ischemia in the mouse and the rat. The model of transient occlusion of the middle cerebral artery (MCA) is performed by the insertion of an occlusive filament until the origin of the MCA while the permanent occlusion described in the mice is performed by a distal electrocoagulation of the MCA. Those models allow evaluating the efficiency of therapeutic strategy of ischemia from tissular aspect to behavioral and cognitive impairment assessment. They were widely used in the literature to evaluate the efficiency of different drugs including the cytokines and especially erythropoietin (EPO) or its derivatives.


Assuntos
Isquemia Encefálica/metabolismo , Eritropoetina/metabolismo , Animais , Isquemia Encefálica/patologia , Infarto da Artéria Cerebral Média/metabolismo , Infarto da Artéria Cerebral Média/patologia , Camundongos , Artéria Cerebral Média/metabolismo , Artéria Cerebral Média/patologia , Ratos
19.
Biol Chem ; 394(4): 529-39, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23399636

RESUMO

Despite multiple advances in cancer therapies, patients with glioblastoma (GBM) still have a poor prognosis. Numerous glioma models are used not only for the development of innovative therapies but also to optimize conventional ones. Given the significance of hypoxia in drug and radiation resistance and that hypoxia is widely observed among GBM, the establishment of a reliable method to map hypoxia in preclinical human models may contribute to the discovery and translation of future and more targeted therapies. The aim of this study was to compare the hypoxic status of two commonly used human orthotopic glioma models (U87 and U251) developed in rats and studied by noninvasive hypoxia imaging with 3-[18F]fluoro-1-(2-nitro-1-imidazolyl)-2-propanol-micro-positron emission tomography ([18F]-FMISO-µPET). In parallel, because of the relationships between angiogenesis and hypoxia, we used magnetic resonance imaging (MRI), histology, and immunohistochemistry to characterize the tumoral vasculature. Although all tumors were detectable in T2-weighted MRI and 2-deoxy-2-[18F]fluoro-d-glucose-µPET, only the U251 model exhibited [18F]-FMISO uptake. Additionally, the U251 tumors were less densely vascularized than U87 tumors. Our study demonstrates the benefits of noninvasive imaging of hypoxia in preclinical models to define the most reliable one for translation of future therapies to clinic based on the importance of intratumoral oxygen tension for the efficacy of chemotherapy and radiotherapy.


Assuntos
Glioma/patologia , Hipóxia/diagnóstico , Misonidazol/análogos & derivados , Tomografia por Emissão de Pósitrons/métodos , Humanos , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
20.
Neuro Oncol ; 15(1): 41-56, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23115160

RESUMO

The individualized care of glioma patients ought to benefit from imaging biomarkers as precocious predictors of therapeutic efficacy. Contrast enhanced MRI and [(18)F]-fluorodeoxyglucose (FDG)-PET are routinely used in clinical settings; their ability to forecast the therapeutic response is controversial. The objectives of our preclinical study were to analyze sensitive µMRI and/or µPET imaging biomarkers to predict the efficacy of anti-angiogenic and/or chemotherapeutic regimens. Human U87 and U251 orthotopic glioma models were implanted in nude rats. Temozolomide and/or bevacizumab were administered. µMRI (anatomical, diffusion, and microrheological parameters) and µPET ([(18)F]-FDG and [(18)F]-fluoro-l-thymidine [FLT]-PET) studies were undertaken soon (t(1)) after treatment initiation compared with late anatomical µMRI evaluation of tumor volume (t(2)) and overall survival. In both models, FDG and FLT uptakes were attenuated at t(1) in response to temozolomide alone or with bevacizumab. The distribution of FLT, reflecting intratumoral heterogeneity, was also modified. FDG was less predictive for treatment efficacy than was FLT (also highly correlated with outcome, P < .001 for both models). Cerebral blood volume was significantly decreased by temozolomide + bevacizumab and was correlated with survival for rats with U87 implants. While FLT was highly predictive of treatment efficacy, a combination of imaging biomarkers was superior to any one alone (P < .0001 in both tumors with outcome). Our results indicate that FLT is a sensitive predictor of treatment efficacy and that predictability is enhanced by a combination of imaging biomarkers. These findings may translate clinically in that individualized glioma treatments could be decided in given patients after PET/MRI examinations.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Encefálicas/diagnóstico por imagem , Fluordesoxiglucose F18 , Glioblastoma/diagnóstico por imagem , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Compostos Radiofarmacêuticos , Animais , Anticorpos Monoclonais Humanizados/administração & dosagem , Bevacizumab , Biomarcadores/análise , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Dacarbazina/administração & dosagem , Dacarbazina/análogos & derivados , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Técnicas Imunoenzimáticas , Ratos , Ratos Nus , Taxa de Sobrevida , Temozolomida , Resultado do Tratamento , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...