Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Psychiatry Res ; 324: 115213, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37098299

RESUMO

Insomnia and its opposite hypersomnia are part of the diagnostic criteria for major depressive disorder (MDD). However, no study has investigated whether the postulated sleep alterations in clinical subtypes of MDD are reflected in polysomnography (PSG)-derived objective sleep measures. The objective of this study was to establish associations between the melancholic, atypical and unspecified subtypes of MDD and objective PSG-based sleep features. This cross-sectional analysis included 1820 community-dwelling individuals who underwent PSG and a semi-structured psychiatric interview to elicit diagnostic criteria for MDD and its subtypes. Adjusted robust linear regression was used to assess associations between MDD subtypes and PSG-derived objective sleep measures. Current melancholic MDD was significantly associated with decreased absolute delta power and sleep efficiency and with increased wake after sleep onset. Remitted unspecified MDD was significantly associated with increased rapid eye movements density. No other significant associations were identified. Our findings reflect that some PSG-based sleep features differed in MDD subtypes compared with no MDD. The largest number of significant differences were observed for current melancholic MDD, whereas only rapid eye movements density could represent a risk factor for MDD as it was the only sleep measure that was also associated with MDD in remitted participants.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/psicologia , Polissonografia , Estudos Transversais , Sono , Depressão
2.
BMC Psychiatry ; 22(1): 758, 2022 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-36463186

RESUMO

BACKGROUND: Sleep spindles have been involved in sleep stabilization and sleep-related memory mechanisms and their deficit emerged as possible biomarker in schizophrenia. However, whether this sleep phenotype is also present in other disorders that share psychotic symptoms remains unclear. To address this gap, we assessed sleep spindles in participants of a prospective population-based cohort who underwent psychiatric assessment (CoLaus|PsyCoLaus) and polysomnographic recording (HypnoLaus). METHODS: Sleep was recorded using ambulatory polysomnography in participants (N = 1037) to the PsyCoLaus study. Sleep spindle parameters were measured in people with a lifelong diagnosis of schizophrenia (SZ), schizoaffective depressive (SAD), schizoaffective manic (SAM), bipolar disorder type I (BP-I) and type II (BP-II). The associations between lifetime diagnostic status (independent variables, SZ, SAD, SAM, BPD-I, BPD-II, controls) and spindle parameters (dependent variables) including density, duration, frequency and maximum amplitude, for all (slow and fast), slow- and fast-spindle were assessed using linear mixed models. Pairwise comparisons of the different spindle parameters between the SZ group and each of the other psychiatric groups was performed using a contrast testing framework from our multiple linear mixed models. RESULTS: Our results showed a deficit in the density and duration of sleep spindles in people with SZ. They also indicated that participants with a diagnosis of SAD, SAM, BP-I and BP-II exhibited different sleep spindle phenotypes. Interestingly, spindle densities and frequencies were different in people with a history of manic symptoms (SAM, BP-I, and BP-II) from those without (SZ, SAD). CONCLUSIONS: Although carried out on a very small number of participants due to the low prevalence of these disorders in general population, this pilot study brought new elements that argued in favor of a deficit of sleep spindles density and duration in people with schizophrenia. In addition, while we could expect a gradual change in intensity of the same sleep spindle parameters through psychotic diagnoses, our results seem to indicate a more complex situation in which the frequency of sleep spindles might be more impacted by diagnoses including a history of mania or hypomania. Further studies with a larger number of participants are required to confirm these effects.


Assuntos
Transtorno Bipolar , Transtornos Psicóticos , Esquizofrenia , Humanos , Transtorno Bipolar/complicações , Transtorno Bipolar/diagnóstico , Esquizofrenia/complicações , Esquizofrenia/diagnóstico , Projetos Piloto , Estudos Prospectivos , Transtornos Psicóticos/complicações , Transtornos Psicóticos/diagnóstico , Sono
3.
Sleep Med ; 49: 53-63, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30078667

RESUMO

The dorsal raphe nucleus (DRN) through its extensive efferent projections has been implicated in a great variety of physiological and behavioral functions including the regulation of the sleep-wake cycle. This nucleus is composed of five sub-regions defined according to the distribution of its serotonergic (5-HT) neurons. In addition to its heterogeneity in neuronal populations, the DRN contains a great diversity of 5-HT neuronal subtypes identified based on their electrophysiological characteristics, morphology and sub-regional distribution. This suggests that the DRN sub-regions may play different functional roles. Recent studies reported long-range inputs specific to the 5-HT neurons of the DRN; but they did not differentiate whether some inputs were specific to a DRN sub-region, or another region. To fulfill this gap, we have previously described the forebrain afferents to the different sub-regions of the DRN using cholera toxin b subunit and Phaseolus vulgaris-leucoagglutinin, as retrograde and anterograde tracers respectively. In the present work, we provide a detailed map of the brainstem projections to these different sub-regions. We show that if some brainstem structures project homogeneously to all sub-regions, most of the brainstem long-range inputs project in a topographically organized manner onto the DRN and, moreover, that a rich interconnected network is present within the DRN.


Assuntos
Tronco Encefálico/fisiologia , Núcleo Dorsal da Rafe/fisiologia , Vias Neurais/fisiologia , Neurotransmissores/fisiologia , Serotonina/metabolismo , Animais , Toxina da Cólera , Núcleo Dorsal da Rafe/anatomia & histologia , Núcleo Dorsal da Rafe/patologia , França , Imuno-Histoquímica/métodos , Masculino , Vias Neurais/anatomia & histologia , Neurônios/fisiologia , Fito-Hemaglutininas , Ratos , Pesquisa , Vigília/fisiologia
4.
Ann Neurol ; 83(1): 61-73, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29244233

RESUMO

OBJECTIVE: Glycogen in astrocyte processes contributes to maintenance of low extracellular glutamate and K+ concentrations around excitatory synapses. Sleep deprivation (SD), a common migraine trigger, induces transcriptional changes in astrocytes, reducing glycogen breakdown. We hypothesize that when glycogen utilization cannot match synaptic energy demand, extracellular K+ can rise to levels that activate neuronal pannexin-1 channels and downstream inflammatory pathway, which might be one of the mechanisms initiating migraine headaches. METHODS: We suppressed glycogen breakdown by inhibiting glycogen phosphorylation with 1,4-dideoxy-1,4-imino-D-arabinitol (DAB) and by SD. RESULTS: DAB caused neuronal pannexin-1 large pore opening and activation of the downstream inflammatory pathway as shown by procaspase-1 cleavage and HMGB1 release from neurons. Six-hour SD induced pannexin-1 mRNA. DAB and SD also lowered the cortical spreading depression (CSD) induction threshold, which was reversed by glucose or lactate supplement, suggesting that glycogen-derived energy substrates are needed to prevent CSD generation. Supporting this, knocking down the neuronal lactate transporter MCT2 with an antisense oligonucleotide or inhibiting glucose transport from vessels to astrocytes with intracerebroventricularly delivered phloretin reduced the CSD threshold. In vivo recordings with a K+ -sensitive/selective fluoroprobe, Asante Potassium Green-4, revealed that DAB treatment or SD caused a significant rise in extracellular K+ during whisker stimulation, illustrating the critical role of glycogen in extracellular K+ clearance. INTERPRETATION: Synaptic metabolic stress caused by insufficient glycogen-derived energy substrate supply can activate neuronal pannexin-1 channels as well as lower the CSD threshold. Therefore, conditions that limit energy supply to synapses (eg, SD) may predispose to migraine attacks, as suggested by genetic studies associating glucose or lactate transporter deficiency with migraine. Ann Neurol 2018;83:61-73.


Assuntos
Química Encefálica , Depressão Alastrante da Atividade Elétrica Cortical/genética , Glicogênio/metabolismo , Privação do Sono/fisiopatologia , Animais , Arabinose/farmacologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Conexinas/efeitos dos fármacos , Conexinas/metabolismo , Metabolismo Energético , Técnicas de Silenciamento de Genes , Proteína HMGB1/metabolismo , Imino Furanoses/farmacologia , Injeções Intraventriculares , Camundongos , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Proteínas do Tecido Nervoso/efeitos dos fármacos , Proteínas do Tecido Nervoso/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Floretina/farmacologia , Potássio/fisiologia , Álcoois Açúcares/farmacologia , Vibrissas/inervação
5.
Transl Psychiatry ; 7(12): 1269, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29217834

RESUMO

Obesity and depression are major public health concerns, and there is increasing evidence that they share etiological mechanisms. CREB-regulated transcription coactivator 1 (CRTC1) participates in neurobiological pathways involved in both mood and energy balance regulation. Crtc1 -/- mice rapidly develop a depressive-like and obese phenotype in early adulthood, and are therefore a relevant animal model to explore possible common mechanisms underlying mood disorders and obesity. Here, the obese phenotype of male and female Crtc1 -/- mice was further characterized by investigating CRTC1's role in the homeostatic and hedonic regulation of food intake, as well as its influence on daily locomotor activity. Crtc1 -/- mice showed a strong gender difference in the homeostatic regulation of energy balance. Mutant males were hyperphagic and rapidly developed obesity on normal chow diet, whereas Crtc1 -/- females exhibited mild late-onset obesity without hyperphagia. Overeating of mutant males was accompanied by alterations in the expression of several orexigenic and anorexigenic hypothalamic genes, thus confirming a key role of CRTC1 in the central regulation of food intake. No alteration in preference and conditioned response for saccharine was observed in Crtc1 -/- mice, suggesting that mutant males' hyperphagia was not due to an altered hedonic regulation of food intake. Intriguingly, mutant males exhibited a hyperphagic behavior only during the resting (diurnal) phase of the light cycle. This abnormal feeding behavior was associated with a higher diurnal locomotor activity indicating that the lack of CRTC1 may affect circadian rhythmicity. Collectively, these findings highlight the male-specific involvement of CRTC1 in the central control of energy balance and circadian locomotor activity.


Assuntos
Ritmo Circadiano/fisiologia , Depressão/fisiopatologia , Metabolismo Energético/fisiologia , Atividade Motora/fisiologia , Fatores de Transcrição/genética , Animais , Comportamento Animal/fisiologia , Ritmo Circadiano/genética , Depressão/genética , Modelos Animais de Doenças , Metabolismo Energético/genética , Feminino , Hiperfagia/genética , Hiperfagia/fisiopatologia , Hipotálamo/metabolismo , Masculino , Camundongos , Camundongos Knockout , Atividade Motora/genética , Obesidade/genética , Obesidade/fisiopatologia , Fatores Sexuais
6.
J Sleep Res ; 25(5): 583-590, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27136914

RESUMO

Sleep is viewed as a fundamental restorative function of the brain, but its specific role in neural energy budget remains poorly understood. Sleep deprivation dampens brain energy metabolism and impairs cognitive functions. Intriguingly, sleep fragmentation, despite normal total sleep duration, has a similar cognitive impact, and in this paper we ask the question of whether it may also impair brain energy metabolism. To this end, we used a recently developed mouse model of 2 weeks of sleep fragmentation and measured 2-deoxy-glucose uptake and glycogen, glucose and lactate concentration in different brain regions. In order to homogenize mice behaviour during metabolic measurements, we exposed them to a novel environment for 1 h. Using an intra-hippocampal electrode, we first showed that hippocampal electroencephalograph (EEG) response to exploration was unaltered by 1 or 14 days of sleep fragmentation. However, after 14 days, sleep fragmented mice exhibited a lower uptake of 2-deoxy-glucose in cortex and hippocampus and lower cortical lactate levels than control mice. Our results suggest that long-term sleep fragmentation impaired brain metabolism to a similar extent as total sleep deprivation without affecting the neuronal responsiveness of hippocampus to a novel environment.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético , Comportamento Exploratório , Privação do Sono/metabolismo , Privação do Sono/fisiopatologia , Animais , Encéfalo/fisiopatologia , Desoxiglucose/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Glicogênio/metabolismo , Hipocampo/metabolismo , Hipocampo/fisiologia , Ácido Láctico/metabolismo , Masculino , Camundongos , Sono , Privação do Sono/psicologia , Fatores de Tempo
7.
Metab Brain Dis ; 30(1): 263-79, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25399336

RESUMO

In 1995 Benington and Heller formulated an energy hypothesis of sleep centered on a key role of glycogen. It was postulated that a major function of sleep is to replenish glycogen stores in the brain that have been depleted during wakefulness which is associated to an increased energy demand. Astrocytic glycogen depletion participates to an increase of extracellular adenosine release which influences sleep homeostasis. Here, we will review some evidence obtained by studies addressing the question of a key role played by glycogen metabolism in sleep regulation as proposed by this hypothesis or by an alternative hypothesis named "glycogenetic" hypothesis as well as the importance of the confounding effect of glucocorticoïds. Even though actual collected data argue in favor of a role of sleep in brain energy balance-homeostasis, they do not support a critical and direct involvement of glycogen metabolism on sleep regulation. For instance, glycogen levels during the sleep-wake cycle are driven by different physiological signals and therefore appear more as a marker-integrator of brain energy status than a direct regulator of sleep homeostasis. In support of this we provide evidence that blockade of glycogen mobilization does not induce more sleep episodes during the active period while locomotor activity is reduced. These observations do not invalidate the energy hypothesis of sleep but indicate that underlying cellular mechanisms are more complex than postulated by Benington and Heller.


Assuntos
Encéfalo/metabolismo , Metabolismo Energético , Glicogênio/metabolismo , Homeostase/fisiologia , Modelos Neurológicos , Sono/fisiologia , Adenosina/metabolismo , Animais , Nível de Alerta/fisiologia , Astrócitos/metabolismo , Ciclo do Ácido Cítrico , Líquido Extracelular/metabolismo , Glucocorticoides/fisiologia , Glucose/metabolismo , Glicogenólise , Glicólise , Humanos , Camundongos , Neurônios/metabolismo , Ratos , Privação do Sono/metabolismo
8.
Sleep ; 38(4): 567-79, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25325477

RESUMO

STUDY OBJECTIVES: Sleep fragmentation (SF) is an integral feature of sleep apnea and other prevalent sleep disorders. Although the effect of repetitive arousals on cognitive performance is well documented, the effects of long-term SF on electroencephalography (EEG) and molecular markers of sleep homeostasis remain poorly investigated. To address this question, we developed a mouse model of chronic SF and characterized its effect on EEG spectral frequencies and the expression of genes previously linked to sleep homeostasis including clock genes, heat shock proteins, and plasticity-related genes. DESIGN: N/A. SETTING: Animal sleep research laboratory. PARTICIPANTS: Sixty-six C57BL6/J adult mice. INTERVENTIONS: Instrumental sleep disruption at a rate of 60/h during 14 days. MEASUREMENTS AND RESULTS: Locomotor activity and EEG were recorded during 14 days of SF followed by recovery for 2 days. Despite a dramatic number of arousals and decreased sleep bout duration, SF minimally reduced total quantity of sleep and did not significantly alter its circadian distribution. Spectral analysis during SF revealed a homeostatic drive for slow wave activity (SWA; 1-4 Hz) and other frequencies as well (4-40 Hz). Recordings during recovery revealed slow wave sleep consolidation and a transient rebound in SWA, and paradoxical sleep duration. The expression of selected genes was not induced following chronic SF. CONCLUSIONS: Chronic SF increased sleep pressure confirming that altered quality with preserved quantity triggers core sleep homeostasis mechanisms. However, it did not induce the expression of genes induced by sleep loss, suggesting that these molecular pathways are not sustainably activated in chronic diseases involving SF.


Assuntos
Homeostase/fisiologia , Privação do Sono/fisiopatologia , Sono/fisiologia , Animais , Nível de Alerta/fisiologia , Doença Crônica , Ritmo Circadiano/genética , Ritmo Circadiano/fisiologia , Eletroencefalografia , Perfilação da Expressão Gênica , Homeostase/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Atividade Motora/fisiologia , Sono/genética , Privação do Sono/genética , Sono REM/fisiologia , Fatores de Tempo
9.
Proc Natl Acad Sci U S A ; 111(33): 12228-33, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25071212

RESUMO

L-lactate is a product of aerobic glycolysis that can be used by neurons as an energy substrate. Here we report that in neurons L-lactate stimulates the expression of synaptic plasticity-related genes such as Arc, c-Fos, and Zif268 through a mechanism involving NMDA receptor activity and its downstream signaling cascade Erk1/2. L-lactate potentiates NMDA receptor-mediated currents and the ensuing increase in intracellular calcium. In parallel to this, L-lactate increases intracellular levels of NADH, thereby modulating the redox state of neurons. NADH mimics all of the effects of L-lactate on NMDA signaling, pointing to NADH increase as a primary mediator of L-lactate effects. The induction of plasticity genes is observed both in mouse primary neurons in culture and in vivo in the mouse sensory-motor cortex. These results provide insights for the understanding of the molecular mechanisms underlying the critical role of astrocyte-derived L-lactate in long-term memory and long-term potentiation in vivo. This set of data reveals a previously unidentified action of L-lactate as a signaling molecule for neuronal plasticity.


Assuntos
Expressão Gênica/efeitos dos fármacos , Ácido Láctico/farmacologia , N-Metilaspartato/metabolismo , Plasticidade Neuronal/genética , Neurônios/metabolismo , Transdução de Sinais , Animais , Cálcio/metabolismo , Células Cultivadas , Camundongos
10.
Sleep ; 36(10): 1445-58, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24082304

RESUMO

STUDY OBJECTIVES: There is growing evidence indicating that in order to meet the neuronal energy demands, astrocytes provide lactate as an energy substrate for neurons through a mechanism called "astrocyte-neuron lactate shuttle" (ANLS). Since neuronal activity changes dramatically during vigilance states, we hypothesized that the ANLS may be regulated during the sleep-wake cycle. To test this hypothesis we investigated the expression of genes associated with the ANLS specifically in astrocytes following sleep deprivation. Astrocytes were purified by fluorescence-activated cell sorting from transgenic mice expressing the green fluorescent protein (GFP) under the control of the human astrocytic GFAP-promoter. DESIGN: 6-hour instrumental sleep deprivation (TSD). SETTING: Animal sleep research laboratory. PARTICIPANTS: Young (P23-P27) FVB/N-Tg (GFAP-GFP) 14Mes/J (Tg) mice of both sexes and 7-8 week male Tg and FVB/Nj mice. INTERVENTIONS: Basal sleep recordings and sleep deprivation achieved using a modified cage where animals were gently forced to move. MEASUREMENTS AND RESULTS: Since Tg and FVB/Nj mice displayed a similar sleep-wake pattern, we performed a TSD in young Tg mice. Total RNA was extracted from the GFP-positive and GFP-negative cells sorted from cerebral cortex. Quantitative RT-PCR analysis showed that levels of Glut1, α-2-Na/K pump, Glt1, and Ldha mRNAs were significantly increased following TSD in GFP-positive cells. In GFP-negative cells, a tendency to increase, although not significant, was observed for Ldha, Mct2, and α-3-Na/K pump mRNAs. CONCLUSIONS: This study shows that TSD induces the expression of genes associated with ANLS specifically in astrocytes, underlying the important role of astrocytes in the maintenance of the neuro-metabolic coupling across the sleep-wake cycle.


Assuntos
Astrócitos/fisiologia , Lactatos/metabolismo , Privação do Sono/genética , Animais , Astrócitos/metabolismo , Eletroencefalografia , Eletromiografia , Feminino , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Genes/fisiologia , Proteínas de Fluorescência Verde , Masculino , Camundongos , Camundongos Transgênicos , Atividade Motora , Sono/genética , Sono/fisiologia , Privação do Sono/fisiopatologia , Vigília/genética , Vigília/fisiologia
11.
Neuropharmacology ; 75: 533-8, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23665355

RESUMO

Sleep-wake cycle is characterized by changes in neuronal network activity. However, for the last decade there is increasing evidence that neuroglial interaction may play a role in the modulation of sleep homeostasis and that astrocytes have a critical impact in this process. Interestingly, astrocytes are organized into communicating networks based on their high expression of connexins, which are the molecular constituents of gap junction channels. Thus, neuroglial interactions should also be considered as the result of the interplay between neuronal and astroglial networks. Here, we investigate the effect of modafinil, a wakefulness-promoting agent, on astrocyte gap junctional communication. We report that in the cortex modafinil injection increases the expression of mRNA and protein of connexin 30 but not those of connexin 43, the other major astroglial connexin. These increases are correlated with an enhancement of intercellular dye coupling in cortical astrocytes, which is abolished when neuronal activity is silenced by tetrodotoxin. Moreover, gamma-hydroxybutyric acid, which at a millimolar concentration induces sleep, has an opposite effect on astroglial gap junctions in an activity-independent manner. These results support the proposition that astroglia may play an important role in complex physiological brain functions, such as sleep regulation, and that neuroglial networking interaction is modified during sleep-wake cycle. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.


Assuntos
Astrócitos/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Fármacos do Sistema Nervoso Central/farmacologia , Córtex Cerebral/citologia , Conexinas/metabolismo , Junções Comunicantes/efeitos dos fármacos , Animais , Animais Recém-Nascidos , Conexinas/genética , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Hidroxibutiratos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Modafinila , Técnicas de Cultura de Órgãos , RNA Mensageiro/metabolismo
12.
J Sleep Res ; 22(1): 3-12, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22734931

RESUMO

Sleep fragmentation is present in numerous sleep pathologies and constitutes a major feature of patients with obstructive sleep apnea. A prevalence of metabolic syndrome, diabetes and obesity has been shown to be associated to obstructive sleep apnea. While sleep fragmentation has been shown to impact sleep homeostasis, its specific effects on metabolic variables are only beginning to emerge. In this context, it is important to develop realistic animal models that would account for chronic metabolic effects of sleep fragmentation. We developed a 14-day model of instrumental sleep fragmentation in mice, and show an impact on both brain-specific and general metabolism. We first report that sleep fragmentation increases food intake without affecting body weight. This imbalance was accompanied by the inability to adequately decrease brain temperature during fragmented sleep. In addition, we report that sleep-fragmented mice develop glucose intolerance. We also observe that sleep fragmentation slightly increases the circadian peak level of glucocorticoids, a factor that may be involved in the observed metabolic effects. Our results confirm that poor-quality sleep with sustained sleep fragmentation has similar effects on general metabolism as actual sleep loss. Altogether, these results strongly suggest that sleep fragmentation is an aggravating factor for the development of metabolic dysfunctions that may be relevant for sleep disorders such as obstructive sleep apnea.


Assuntos
Glicemia/fisiologia , Temperatura Corporal/fisiologia , Encéfalo/fisiopatologia , Ingestão de Alimentos/fisiologia , Privação do Sono/complicações , Animais , Corticosterona/urina , Eletroencefalografia , Eletromiografia , Teste de Tolerância a Glucose , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Privação do Sono/fisiopatologia
13.
J Neurosci ; 31(50): 18338-52, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22171037

RESUMO

The glyoxalase system is the most important pathway for the detoxification of methylglyoxal (MG), a highly reactive dicarbonyl compound mainly formed as a by-product of glycolysis. MG is a major precursor of advanced glycation end products (AGEs), which are associated with several neurodegenerative disorders. Although the neurotoxic effects of MG and AGEs are well characterized, little is known about the glyoxalase system in the brain, in particular with regards to its activity in different neural cell types. Results of the present study reveal that both enzymes composing the glyoxalase system [glyoxalase-1 (Glo-1) and Glo-2] were highly expressed in primary mouse astrocytes compared with neurons, which translated into higher enzymatic activity rates in astrocytes (9.9- and 2.5-fold, respectively). The presence of a highly efficient glyoxalase system in astrocytes was associated with lower accumulation of AGEs compared with neurons (as assessed by Western blotting), a sixfold greater resistance to MG toxicity, and the capacity to protect neurons against MG in a coculture system. In addition, Glo-1 downregulation using RNA interference strategies resulted in a loss of viability in neurons, but not in astrocytes. Finally, stimulation of neuronal glycolysis via lentiviral-mediated overexpression of 6-phosphofructose-2-kinase/fructose-2,6-bisphosphatase-3 resulted in increased MG levels and MG-modified proteins. Since MG is largely produced through glycolysis, this suggests that the poor capacity of neurons to upregulate their glycolytic flux as compared with astrocytes may be related to weaker defense mechanisms against MG toxicity. Accordingly, the neuroenergetic specialization taking place between these two cell types may serve as a protective mechanism against MG-induced neurotoxicity.


Assuntos
Astrócitos/enzimologia , Citoproteção/fisiologia , Lactoilglutationa Liase/metabolismo , Neurônios/enzimologia , Tioléster Hidrolases/metabolismo , Animais , Astrócitos/citologia , Células CHO , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/enzimologia , Cricetinae , Lactoilglutationa Liase/genética , Camundongos , Neurônios/citologia , Tioléster Hidrolases/genética
14.
PLoS One ; 6(7): e22875, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21829542

RESUMO

Neurodegenerative and psychiatric disorders including Alzheimer's, Parkinson's or Huntington's diseases and schizophrenia have been associated with a deficit in glutathione (GSH). In particular, a polymorphism in the gene of glutamate cysteine ligase modulatory subunit (GCLM) is associated with schizophrenia. GSH is the most important intracellular antioxidant and is necessary for the removal of reactive by-products generated by the utilization of glucose for energy supply. Furthermore, glucose metabolism through the pentose phosphate pathway is a major source of NADPH, the cofactor necessary for the regeneration of reduced glutathione. This study aims at investigating glucose metabolism in cultured astrocytes from GCLM knockout mice, which show decreased GSH levels. No difference in the basal metabolism of glucose was observed between wild-type and knockout cells. In contrast, glycogen levels were lower and its turnover was higher in knockout astrocytes. These changes were accompanied by a decrease in the expression of the genes involved in its synthesis and degradation, including the protein targeting to glycogen. During an oxidative challenge induced by tert-Butylhydroperoxide, wild-type cells increased their glycogen mobilization and glucose uptake. However, knockout astrocytes were unable to mobilize glycogen following the same stress and they could increase their glucose utilization only following a major oxidative insult. Altogether, these results show that glucose metabolism and glycogen utilization are dysregulated in astrocytes showing a chronic deficit in GSH, suggesting that alterations of a fundamental aspect of brain energy metabolism is caused by GSH deficit and may therefore be relevant to metabolic dysfunctions observed in schizophrenia.


Assuntos
Astrócitos/metabolismo , Astrócitos/patologia , Glutamato-Cisteína Ligase/fisiologia , Glutationa/deficiência , Glicogênio/metabolismo , Estresse Oxidativo , Animais , Antioxidantes/farmacologia , Western Blotting , Dióxido de Carbono/metabolismo , Células Cultivadas , Doença Crônica , Metabolismo Energético , Glucose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Degeneração Neural , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Esquizofrenia/metabolismo , Esquizofrenia/patologia
15.
Sleep ; 33(7): 901-8, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20614850

RESUMO

STUDY OBJECTIVES: The main energy reserve of the brain is glycogen, which is almost exclusively localized in astrocytes. We previously reported that cerebral expression of certain genes related to glycogen metabolism changed following instrumental sleep deprivation in mice. Here, we extended our investigations to another set of genes related to glycogen and glucose metabolism. We also compared the effect of instrumentally and pharmacologically induced prolonged wakefulness, followed (or not) by 3 hours of sleep recovery, on the expression of genes related to brain energy metabolism. DESIGN: Sleep deprivation for 6-7 hours. SETTING: Animal sleep research laboratory. PARTICIPANTS: Adults OF1 mice. INTERVENTIONS: Wakefulness was maintained by "gentle sleep deprivation" method (GSD) or by administration of the wakefulness-promoting drug modafinil (MOD) (200 mg/kg i.p.). MEASUREMENTS AND RESULTS: Levels of mRNAs encoding proteins related to energy metabolism were measured by quantitative real-time PCR in the cerebral cortex. The mRNAs encoding protein targeting to glycogen (PTG) and the glial glucose transporter were significantly increased following both procedures used to prolong wakefulness. Glycogenin mRNA levels were increased only after GSD, while neuronal glucose transporter mRNA only after MOD. These effects were reversed after sleep recovery. A significant enhancement of glycogen synthase activity without any changes in glycogen levels was observed in both conditions. CONCLUSIONS: These results indicate the existence of a metabolic adaptation of astrocytes aimed at maintaining brain energy homeostasis during the sleep-wake cycle.


Assuntos
Córtex Cerebral/metabolismo , Privação do Sono/metabolismo , Animais , Compostos Benzidrílicos , Estimulantes do Sistema Nervoso Central , Modelos Animais de Doenças , Metabolismo Energético , Expressão Gênica , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glucosiltransferases/metabolismo , Glicogênio/metabolismo , Glicogênio Sintase/metabolismo , Glicoproteínas/metabolismo , Masculino , Camundongos , Modafinila , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Privação do Sono/induzido quimicamente , Vigília/fisiologia
16.
Neurochem Int ; 55(1-3): 45-51, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19428806

RESUMO

Although glycogen (Glyc) is the main carbohydrate storage component, the role of Glyc in the brain during prolonged wakefulness is not clear. The aim of this study was to determine brain Glyc concentration ([]) and turnover time (tau) in euglycemic conscious and undisturbed rats, compared to rats maintained awake for 5h. To measure the metabolism of [1-(13)C]-labeled Glc into Glyc, 23 rats received a [1-(13)C]-labeled Glc solution as drink (10% weight per volume in tap water) ad libitum as their sole source of exogenous carbon for a "labeling period" of either 5h (n=13), 24h (n=5) or 48 h (n=5). Six of the rats labeled for 5h were continuously maintained awake by acoustic, tactile and olfactory stimuli during the labeling period, which resulted in slightly elevated corticosterone levels. Brain [Glyc] measured biochemically after focused microwave fixation in the rats maintained awake (3.9+/-0.2 micromol/g, n=6) was not significantly different from that of the control group (4.0+/-0.1 micromol/g, n=7; t-test, P>0.5). To account for potential variations in plasma Glc isotopic enrichment (IE), Glyc IE was normalized by N-acetyl-aspartate (NAA) IE. A simple mathematical model was developed to derive brain Glyc turnover time as 5.3h with a fit error of 3.2h and NAA turnover time as 15.6h with a fit error of 6.5h, in the control rats. A faster tau(Glyc) (2.9h with a fit error of 1.2h) was estimated in the rats maintained awake for 5h. In conclusion, 5h of prolonged wakefulness mainly activates glycogen metabolism, but has minimal effect on brain [Glyc].


Assuntos
Química Encefálica/fisiologia , Estado de Consciência/fisiologia , Glicogênio/metabolismo , Vigília/fisiologia , Algoritmos , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Glicemia/metabolismo , Corticosterona/sangue , Corticosterona/metabolismo , Glucose/metabolismo , Espectroscopia de Ressonância Magnética , Ratos , Ratos Sprague-Dawley
17.
J Neurochem ; 93(6): 1623-32, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15935079

RESUMO

We studied the effects of chloramphenicol on brain glucose utilization and sleep-wake cycles in rat. After slightly anaesthetized animals were injected with [18F]fluoro-2-deoxy-D-glucose, we acquired time-concentration curves from three radiosensitive beta microprobes inserted into the right and left frontal cortices and the cerebellum, and applied a three-compartment model to calculate the cerebral metabolic rates for glucose. The sleep-wake cycle architecture was analysed in anaesthetic-free rats by recording electroencephalographic and electromyographic signals. Although chloramphenicol is a well-established inhibitor of oxidative phosphorylation, no compensatory increase in glucose utilization was detected in frontal cortex. Instead, chloramphenicol induced a significant 23% decrease in the regional cerebral metabolic rate for glucose. Such a metabolic response indicates a potential mismatch between energy supply and neuronal activity induced by chloramphenicol administration. Regarding sleep-wake states, chloramphenicol treatment was followed by a 64% increase in waking, a 20% decrease in slow-wave sleep, and a marked 59% loss in paradoxical sleep. Spectral analysis of the electroencephalogram indicates that chloramphenicol induces long-lasting modifications of delta-band power during slow-wave sleep.


Assuntos
Encéfalo/efeitos dos fármacos , Cloranfenicol/farmacologia , Glucose/metabolismo , Inibidores da Síntese de Proteínas/farmacologia , Sono/efeitos dos fármacos , Vigília/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Eletroencefalografia/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Masculino , Ratos , Ratos Wistar , Sono/fisiologia , Vigília/fisiologia
18.
J Cereb Blood Flow Metab ; 24(9): 1015-24, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15356422

RESUMO

A new beta-microprobe (betaP) has been used to locally measure the time-concentration curve of a radiolabeled substance. The betaP, analogous to positron emission tomography methodology, is useful for in vivo animal studies because it can acquire time-concentration curves with high temporal and spatial resolution. Using [18F]fluoro-2-deoxy-D-glucose and betaP, we evaluated the reliability of the biologic parameters and we compared this method with the [14C]2-deoxy-D-glucose autoradiography. BetaP time-concentration curves in three regions of the brain were obtained from 24 rats. Four kinetic parameters (K1-k4) were estimated from 60-minute experimental periods using a three-compartment model. Best fits were obtained when the vascular fraction (Fv) was estimated simultaneously with the four kinetic parameters (K1-k4). The mean estimated Fv values were about 5.5% for the frontal cortex regions and 8.0% for the cerebellum. Correlation coefficients higher than 0.830 were observed between regional cerebral metabolic rates for glucose (rCMRglc) values obtained by betaP and autoradiography. In addition, the betaP-derived input function was similar to that obtained by manual sampling. Our findings show that reliable rCMRglc values can be obtained using betaP.


Assuntos
Encéfalo/metabolismo , Desoxiglucose/metabolismo , Diagnóstico por Imagem/métodos , Glucose/metabolismo , Modelos Neurológicos , Animais , Autorradiografia , Radioisótopos de Carbono/metabolismo , Relação Dose-Resposta a Droga , Radioisótopos de Flúor/metabolismo , Fluordesoxiglucose F18/metabolismo , Masculino , Ratos , Ratos Sprague-Dawley , Fatores de Tempo
19.
Eur J Neurosci ; 16(6): 1163-7, 2002 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12383246

RESUMO

Replenishment of brain glycogen stores depleted during waking has been suggested to constitute one of the functions of sleep [Benington, J. H. & Heller H. C. (1995) Prog. Neurobiol., 45, 347]. We have tested the hypothesis that the level of expression of enzymes involved in glycogen metabolism could undergo variations throughout the sleep-waking or rest-activity cycle, and after 6 h of 'gentle' total sleep deprivation in mice. Specifically, we determined the variations in mRNAs coding for protein targeting to glycogen (PTG), glycogen synthase and glycogen phosphorylase, all considered as key regulators of glycogen metabolism. Glycogen synthase and glycogen phosphorylase mRNAs exhibited significant variations throughout the light-dark cycle with a maximum at the middle of the light period and a minimum at the middle of the dark period. Following sleep deprivation, a two-fold increase in PTG mRNA and a decrease of mRNAs encoding glycogen synthase and glycogen phosphorylase were observed. These transcriptional events have functional consequences as the activity of glycogen synthase was increased 2.5-fold indicating a stimulating effect of sleep deprivation on glycogen synthesis. These results indicate that (i) expression of genes related to brain glycogen metabolism exhibit variations throughout the sleep-waking or rest-activity cycle and (ii) given the almost selective localization of glycogen to astrocytes, these cells might participate in the regulation of sleep.


Assuntos
Encéfalo/enzimologia , Glicogênio Fosforilase/genética , Glicogênio Sintase/genética , Glicogênio/metabolismo , Privação do Sono/enzimologia , Sono/genética , Animais , Ritmo Circadiano/genética , Regulação Enzimológica da Expressão Gênica/genética , Camundongos , Camundongos Endogâmicos , RNA Mensageiro/metabolismo , Privação do Sono/genética , Regulação para Cima/genética , Vigília/genética
20.
Neuropharmacology ; 43(1): 110-8, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12213265

RESUMO

Modafinil is a wakefulness-promoting substance whose profile differs from that of the classical psychostimulants. It is still unknown whether waking induced by modafinil and wakefulness induced by sleep deprivation differ in terms of their effect on subsequent sleep. To investigate this problem sleep was recorded in two groups of OF1 mice. One group received modafinil (200 mg/kg, i.p.) at light onset which induced a period of wakefulness of approx. 5 h, while animals of the subsequent control group were injected with vehicle and kept awake for an equivalent duration. The effect of the two treatments on sleep was similar. REM sleep was initially reduced and slow-wave activity (SWA; EEG power in the 0.75-4.0 Hz range) in nonREM sleep was enhanced for several hours. The SWA increase was more prominent over the frontal cortex than over the occipital cortex after both treatments. A minor difference was seen at the occipital site where the initial rise of power in the low-frequency range was larger after vehicle combined with enforced waking than after modafinil. The study shows that the homeostatic sleep response following the modafinil-induced wakefulness corresponds largely to the response following a non-pharmacologically induced extended waking episode.


Assuntos
Estimulantes do Sistema Nervoso Central/farmacologia , Privação do Sono/fisiopatologia , Análise de Variância , Animais , Compostos Benzidrílicos/farmacologia , Eletroencefalografia/efeitos dos fármacos , Eletroencefalografia/normas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modafinila , Fases do Sono/efeitos dos fármacos , Fases do Sono/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...