Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 838(Pt 3): 156422, 2022 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-35662600

RESUMO

A paradigm shift is needed in wastewater treatment plants (WWTPs) to progress from traditional pollutant removal to resource recovery. However, whether this transformation produces overall environmental benefits will depend on the efficient and sustainable use of resources by emerging technologies. Given that many of these technologies are still being tested at the pilot scale, there is a lack of environmental assessments quantifying their impacts and benefits. In particular, an integrated approach to energy and nutrient recovery can elucidate the potential configurations for WWTPs. In this study, we conduct a life cycle assessment (LCA) of emergent wastewater treatment technologies aimed at increasing resource circularity in WWTPs. We focus on increasing energy self-sufficiency through biogas upgrades and a more radical circular approach aimed at nutrient recovery. Based on a case-study WWTP, we compare its current configuration with (1) implementing autotrophic nitrogen removal in the mainstream and deriving most of the organic matter for biogas production, which increases the quality and quantity of biogas available for energy production; (2) implementing struvite recovery through enhanced biological phosphorus removal (EBPR) as a radical approach to phosphorus management, offering an alternative to mineral fertilizer; and (3) a combination of both approaches. The results show that incremental changes in biogas production are insufficient for compensating for the environmental investment in infrastructure, although autotrophic nitrogen removal is beneficial for increasing the quality of the effluent. Combined phosphorus and energy recovery reduce the environmental impacts from the avoided use of fertilizers and phosphorus and the nitrogen release into water bodies. An integrated approach to resource management in WWTPs is thus desirable and creates new opportunities toward the implementation of circular strategies with low environmental impact in cities.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Biocombustíveis , Fertilizantes , Nitrogênio , Fósforo/química , Estruvita , Eliminação de Resíduos Líquidos/métodos
2.
Sci Total Environ ; 799: 149424, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-34375876

RESUMO

Urban agriculture (UA) is a means for cities to become more resilient in terms of food sovereignty while shortening the distance between production and consumption. However, intensive soilless UA still depends on the use of fertilizers, which relies on depleting non-renewable resources such as phosphorous (P) and causes both local and global impact for its production and application. With the aim to reduce such impacts and encourage a more efficient use of nutrients, this study assesses the feasibility of using struvite precipitated from an urban wastewater treatment plant as the unique source of P fertilizer. To do so, we apply various quantities of struvite (ranging from 1 to 20 g/plant) to the substrate of a hydroponic Phaseolus vulgaris crop and determine the yield, water flows and P balances. The results show that treatments with more than 5 g of struvite per plant produced a higher yield (maximum of 181.41 g/plant) than the control (134.6 g/plant) with mineral fertilizer (KPO4H2). On the other hand, P concentration in all plant organs was always lower when using struvite than when using chemical fertilizer. Finally, the fact that different amounts of struvite remained undissolved in all treatments denotes the importance to balance between a correct P supply to the plant and a decrease of P lost through the leachates, based on the amount of struvite and the irrigated water. The findings of this study show that it is feasible for UA to efficiently use locally recovered nutrients such as P to produce local food.


Assuntos
Fertilizantes , Fósforo , Agricultura , Hidroponia , Fosfatos , Estruvita
3.
Front Plant Sci ; 11: 596550, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33281854

RESUMO

Urban agriculture systems can significantly contribute towards mitigating the impacts of inefficient and complex food supply chains and increase urban food sovereignty. Moreover, improving these urban agriculture systems in terms of nutrient management can lead to a better environmental performance. Based on a rooftop greenhouse in the Barcelona region, we propose a cascade system where the leachates of a tomato cycle from January to July (donor crop) are used as the main irrigation source for five successive lettuce cycles (receiving crop). By determining the agronomic performance and the nutrient metabolism of the system, we aimed to define the potential of these systems to avoid nutrient depletion and mitigate eutrophication, while scaling the system in terms of nutrient supply between the donor and the receiving crops. The results showed that low yields (below 130 g per lettuce plant) are obtained if a cascade system is used during the early stage of the donor crop, as the amount of nutrients in donor's leachates, specially N (62.4 mg irrigated per plant in the first cycle), was not enough to feed the lettuce receiving crop. This effect was also observed in the nutrient content of the lettuce, which increased with every test until equaling the control (4.4% of N content) as the leachates got richer, although too high electrical conductivity values (near 3 dS/m) were reached at the end of the donor crop cycle. Findings on the uptake of the residual nutrient flows showed how the cascade system was able to take advantage of the nutrients to produce local lettuce while mitigating the effect of N and P in the freshwater and marine environments. Considering our case study, we finally quantified the scale between the donor and receiving crops and proposed three major ideas to optimize the nutrient flows while maintaining the yield and quality of the vegetables produced in the receiving crop.

4.
Sci Total Environ ; 737: 139783, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32516664

RESUMO

Phosphorus (P) resources are decreasing at an alarming rate due to global fertilizer use and insufficient nutrient recovery strategies. Currently, more circular approaches are promoted, such as recovering P from wastewater in the form of struvite. This is especially attractive for urban areas, where there is a growing trend of local crop production and large volumes of wastewater are treated in centralized wastewater treatment plants (WWTPs). This research aims to assess the technical and environmental feasibility of applying a struvite recovery and reuse strategy to meet the P requirements to fertilize the agricultural fields of an urban region. To do so, we analyze the potential P recovery and the environmental impacts of integrating three recovery technologies (REM-NUT®, Ostara® and AirPrex®) in the two biggest WWTPs of the Àrea Metropolitana de Barcelona. The results show that all technologies are able to recover between 5 and 30 times the amount of P required to fertilize the agricultural area of the region annually (36.5 t). As can be expected, including P recovery technologies result in additional impacts per m3 of wastewater due to increased electricity consumption and chemicals required for the struvite precipitation. However, struvite recovery results in less eutrophication potential, especially in the REM-NUT® case, with an average reduction of 5.4 times. On the other hand, Ostara®, that recovers P from the digestate, had the lowest impacts (9 kgCO2eq/kgP), even compared to the production of mineral fertilizer. When we apply our findings to the whole region, we can see that chemical use for struvite precipitation and energy consumption during the wastewater treatment process are the elements with the greatest impact. Thus, choosing the most appropriate technology in the most suitable WWTP is the most efficient strategy to diminish the environmental impacts of the system.

5.
J Ind Ecol ; 23(4): 767-780, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31598060

RESUMO

Cities are rapidly growing and need to look for ways to optimize resource consumption. Metropolises are especially vulnerable in three main systems, often referred to as the FEW (i.e., food, energy, and water) nexus. In this context, urban rooftops are underutilized areas that might be used for the production of these resources. We developed the Roof Mosaic approach, which combines life cycle assessment with two rooftop guidelines, to analyze the technical feasibility and environmental implications of producing food and energy, and harvesting rainwater on rooftops through different combinations at different scales. To illustrate, we apply the Roof Mosaic approach to a densely populated neighborhood in a Mediterranean city. The building-scale results show that integrating rainwater harvesting and food production would avoid relatively insignificant emissions (13.9-18.6 kg CO2 eq/inhabitant/year) in the use stage, but their construction would have low environmental impacts. In contrast, the application of energy systems (photovoltaic or solar thermal systems) combined with rainwater harvesting could potentially avoid higher CO2 eq emissions (177-196 kg CO2 eq/inhabitant/year) but generate higher environmental burdens in the construction phase. When applied at the neighborhood scale, the approach can be optimized to meet between 7% and 50% of FEW demands and avoid up to 157 tons CO2 eq/year. This approach is a useful guide to optimize the FEW nexus providing a range of options for the exploitation of rooftops at the local scale, which can aid cities in becoming self-sufficient, optimizing resources, and reducing CO2 eq emissions.

6.
Sci Total Environ ; 651(Pt 1): 1495-1504, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30360279

RESUMO

Urban agriculture has emerged as an alternative to conventional rural agriculture seeking to foster a sustainable circular economy in cities. When considering the feasibility of urban agriculture and planning for the future of food production and energy, it is important to understand the relationships between energy flows throughout the system, identify their strengths and weaknesses, and make suggestions to optimize the system. To address this need, we analyzed the energy flows for growing tomatoes at a rooftop greenhouse (RTG). We used life cycle assessment (LCA) to identify the flows within the supply chain. We further analyzed these flows using ecological network analysis (ENA), which allowed a comparison of the industrial system to natural systems. Going beyond LCA, ENA also allowed us to focus more on the relationships between components. Similar to existing ENA studies on urban metabolism, our results showed that the RTG does not mimic the perfect pyramidal structure found in natural ecosystems due to the system's dependency on fossil fuels throughout the supply chain and each industry's significant impact on wasted energy. However, it was discovered that the RTG has strong foundational relationships in its industries, demonstrating overall positive utility; this foundation can be improved by using more renewable energy and increasing the recycling rates throughout the supply chain, which will in turn improve the hierarchy of energy flows and overall energy consumption performance of the system.


Assuntos
Agricultura/métodos , Cidades , Conservação dos Recursos Naturais , Solanum lycopersicum/crescimento & desenvolvimento , Ecossistema , Modelos Teóricos
7.
Sci Total Environ ; 621: 434-443, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29190566

RESUMO

Water management plays a major role in any city, but applying alternative strategies might be more or less feasible depending on the urban form and water demand. This paper aims to compare the environmental performance of implementing rainwater harvesting (RWH) systems in American and European cities. To do so, two neighborhoods with a water-stressed Mediterranean climate were selected in contrasting cities, i.e., Calafell (Catalonia, Spain) and Ukiah (California, US). Calafell is a high-density, tourist city, whereas Ukiah is a typical sprawled area. We studied the life cycle impacts of RWH in urban contexts by using runoff modeling before (i.e. business as usual) and after the implementation of this system. In general, cisterns were able to supply >75% of the rainwater demand for laundry and toilet flushing. The exception were multi-story buildings with roofs smaller than 200m2, where the catchment area was insufficient to meet demand. The implementation of RWH was environmentally beneficial with respect to the business-as-usual scenario, especially because of reduced runoff treatment needs. Along with soil features, roof area and water demand were major parameters that affected this reduction. RWH systems are more attractive in Calafell, which had 60% lower impacts than in Ukiah. Therefore, high-density areas can potentially benefit more from RWH than sprawled cities.

8.
J Environ Manage ; 189: 14-21, 2017 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-28002777

RESUMO

Rainwater harvesting might help to achieve self-sufficiency, but it must comply with health standards. We studied the runoff quantity and quality harvested from seven urban surfaces in a university campus in Barcelona according to their use (pedestrian or motorized mobility) and materials (concrete, asphalt and slabs). An experimental rainwater harvesting system was used to collect the runoff resulting from a set of rainfall events. We estimated the runoff coefficient and initial abstraction of each surface and analyzed the physicochemical and microbiological properties, and hydrocarbon and metal content of the samples. Rainfall intensity, surface material and state of conservation were essential parameters. Because of low rainfall intensity and surface degradation, the runoff coefficient was variable, with a minimum of 0.41. Concrete had the best quality, whereas weathering and particulate matter deposition led to worse quality in asphalt areas. Physicochemical runoff quality was outstanding when compared to superficial and underground water. Microorganisms were identified in the samples (>1 CFU/100 mL) and treatment is required to meet human consumption standards. Motorized traffic mostly affects the presence of metals such as zinc (31.7 µg/L). In the future, sustainable mobility patterns might result in improved rainwater quality standards.


Assuntos
Chuva , Qualidade da Água , Abastecimento de Água/métodos , Cidades , Monitoramento Ambiental/métodos , Metais/análise , Material Particulado , Espanha , Microbiologia da Água , Poluentes Químicos da Água/análise
9.
Sci Total Environ ; 580: 873-881, 2017 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-27986313

RESUMO

Flood damage results in economic and environmental losses in the society, but flood prevention also entails an initial investment in infrastructure. This study presents an integrated eco-efficiency approach for assessing flood prevention and avoided damage. We focused on ephemeral streams in the Maresme region (Catalonia, Spain), which is an urbanized area affected by damaging torrential events. Our goal was to determine the feasibility of post-disaster emergency actions implemented after a major event through an integrated hydrologic, environmental and economic approach. Life cycle assessment (LCA) and costing (LCC) were used to determine the eco-efficiency of these actions, and their net impact and payback were calculated by integrating avoided flood damage. Results showed that the actions effectively reduced damage generation when compared to the registered water flows and rainfall intensities. The eco-efficiency of the emergency actions resulted in 1.2kgCO2eq. per invested euro. When integrating the avoided damage into the initial investment, negative net impacts were obtained (e.g., -5.2E+05€ and -2.9E+04kgCO2eq. per event), which suggests that these interventions contributed with environmental and economic benefits to the society. The economic investment was recovered in two years, whereas the design could be improved to reduce their environmental footprint, which is recovered in 25years. Our method and results highlight the effects of integrating the environmental and economic consequences of decisions at an urban scale and might help the administration and insurance companies in the design of prevention plans and climate change adaptation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...