Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38894203

RESUMO

Autonomous systems are becoming increasingly relevant in our everyday life. The transportation field is no exception and the smart cities concept raises new tasks and challenges for the development of autonomous systems development which has been progressively researched in literature. One of the main challenges is communication between different traffic objects. For instance, a mobile robot system can work as a standalone autonomous system reacting to a static environment and avoiding obstacles to reach a target. Nevertheless, more intensive communication and decision making is needed when additional dynamic objects and other autonomous systems are present in the same working environment. Traffic is a complicated environment consisting of vehicles, pedestrians, and various infrastructure elements. To apply autonomous systems in this kind of environment it is important to integrate object localization and to guarantee functional and trustworthy communication between each element. To achieve this, various sensors, communication standards, and equipment are integrated via the application of sensor fusion and AI machine learning methods. In this work review of vehicular communication systems is presented. The main focus is the researched sensors, communication standards, devices, machine learning methods, and vehicular-related data to find existing gaps for future vehicular communication system development. In the end, discussion and conclusions are presented.

2.
Sensors (Basel) ; 18(8)2018 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-30115868

RESUMO

Increasing the imaging rate of atomic force microscopy (AFM) without impairing of the imaging quality is a challenging task, since the increase in the scanning speed leads to a number of artifacts related to the limited mechanical bandwidth of the AFM components. One of these artifacts is the loss of contact between the probe tip and the sample. We propose to apply an additional nonlinear force on the upper surface of a cantilever, which will help to keep the tip and surface in contact. In practice, this force can be produced by the precisely regulated airflow. Such an improvement affects the AFM system dynamics, which were evaluated using a mathematical model that is presented in this paper. The model defines the relationships between the additional nonlinear force, the pressure of the applied air stream, and the initial air gap between the upper surface of the cantilever and the end of the air duct. It was found that the nonlinear force created by the stream of compressed air (aerodynamic force) prevents the contact loss caused by the high scanning speed or the higher surface roughness, thus maintaining stable contact between the probe and the surface. This improvement allows us to effectively increase the scanning speed by at least 10 times using a soft (spring constant of 0.2 N/m) cantilever by applying the air pressure of 40 Pa. If a stiff cantilever (spring constant of 40 N/m) is used, the potential of vertical deviation improvement is twice is large. This method is suitable for use with different types of AFM sensors and it can be implemented practically without essential changes in AFM sensor design.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...