Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther ; 34(19-20): 1003-1021, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37597192

RESUMO

For successful vector-based gene therapy manufacturing, the selected adeno-associated virus (AAV) vector production system must produce vector at sufficient scale. However, concerns have arisen regarding the quality of vector produced using different systems. In this study, we compared AAV serotypes 1, 8, and 9 produced by two different systems (Sf9/baculovirus and HEK293/transfection) and purified by two separate processes. We evaluated capsid properties, including protein composition, post-translational modification, particle content profiles, and in vitro and in vivo vector potency. Vectors produced in the Sf9/baculovirus system displayed reduced incorporation of viral protein 1 and 2 into the capsid, increased capsid protein deamidation, increased empty and partially packaged particles in vector preparations, and an overall reduced potency. The differences observed were largely independent of the harvest method and purification process. These findings illustrate the need for careful consideration when choosing an AAV vector production system for clinical production.


Assuntos
Proteínas do Capsídeo , Capsídeo , Humanos , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Células HEK293 , Vetores Genéticos/genética , Dependovirus/genética , Dependovirus/metabolismo
2.
Mol Ther Methods Clin Dev ; 2: 15040, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26605372

RESUMO

Recent successes of adeno-associated virus (AAV)-based gene therapy have created a demand for large-scale AAV vector manufacturing and purification techniques for use in clinical trials and beyond. During the development of purification protocols for rh.10, hu.37, AAV8, rh.64R1, AAV3B, and AAV9 vectors, based on a widely used affinity resin, AVB sepharose (GE), we found that, under the same conditions, different serotypes have different affinities to the resin, with AAV3B binding the best and AAV9 the poorest. Further analysis revealed a surface-exposed residue (amino acid number 665 in AAV8 VP1 numbering) differs between the high-affinity AAV serotypes (serine in AAV3B, rh.10, and hu.37) and the low-affinity ones (asparagine in AAV8, rh.64R1, and AAV9). The residue locates within a surface-exposed, variable epitope flanked by highly conserved residues. The substitution of the epitope in AAV8, rh.64R1, and AAV9 with the corresponding epitope of AAV3B (SPAKFA) resulted in greatly increased affinity to AVB sepharose with no reduction in the vectors' in vitro potency. The presence of the newly identified AVB-binding epitope will be useful for affinity resin selection for the purification of novel AAV serotypes. It also suggests the possibility of vector engineering to yield a universal affinity chromatography purification method for multiple AAV serotypes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...