Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metallomics ; 6(4): 845-53, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24430377

RESUMO

Zinc is an essential metal for cellular homeostasis and function in both eukaryotes and prokaryotes. To acquire this essential nutrient, bacteria employ transporters characterized by different affinity for the metal. Several studies have investigated the role of the high affinity transporter ZnuABC in the bacterial response to zinc shortage, showing that this transporter has a key role in adapting bacteria to zinc starvation. In contrast, the role of the low affinity zinc importer ZupT has been the subject of limited investigations. Here we show that a Salmonella strain lacking ZupT is impaired in its ability to grow in metal devoid environments and that a znuABC zupT strain exhibits a severe growth defect in zinc devoid media, is hypersensitive to oxidative stress and contains reduced levels of intracellular free zinc. Moreover, we show that ZupT also plays a role in the ability of S. Typhimurium to colonize the host tissues. During systemic infections, the single zupT mutant strain was attenuated only in Nramp1(+/+) mice, but competition experiments between znuABC and znuABC zupT mutants revealed that ZupT contributes to metal uptake in vivo independently of the presence of a functional Nramp1 transporter. Altogether, the here reported results show that ZupT plays an important role in Salmonella zinc homeostasis, being involved in metal import both in vitro and in infected animals.


Assuntos
Proteínas de Bactérias/genética , Proteínas de Membrana Transportadoras/genética , Infecções por Salmonella/microbiologia , Salmonella enterica/genética , Salmonella enterica/patogenicidade , Zinco/metabolismo , Animais , Proteínas de Bactérias/metabolismo , Feminino , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Homeostase , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Infecções por Salmonella/metabolismo , Salmonella enterica/fisiologia
2.
Biochim Biophys Acta ; 1840(1): 535-44, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24128931

RESUMO

BACKGROUND: In Gram-negative bacteria the ZnuABC transporter ensures adequate zinc import in Zn(II)-poor environments, like those encountered by pathogens within the infected host. Recently, the metal-binding protein ZinT was suggested to operate as an accessory component of ZnuABC in periplasmic zinc recruitment. Since ZinT is known to form a ZinT-ZnuA complex in the presence of Zn(II) it was proposed to transfer Zn(II) to ZnuA. The present work was undertaken to test this claim. METHODS: ZinT and its structural relationship with ZnuA have been characterized by multiple biophysical techniques (X-ray crystallography, SAXS, analytical ultracentrifugation, fluorescence spectroscopy). RESULTS: The metal-free and metal-bound crystal structures of Salmonella enterica ZinT show one Zn(II) binding site and limited structural changes upon metal removal. Spectroscopic titrations with Zn(II) yield a KD value of 22±2nM for ZinT, while those with ZnuA point to one high affinity (KD<20nM) and one low affinity Zn(II) binding site (KD in the micromolar range). Sedimentation velocity experiments established that Zn(II)-bound ZinT interacts with ZnuA, whereas apo-ZinT does not. The model of the ZinT-ZnuA complex derived from small angle X-ray scattering experiments points to a disposition that favors metal transfer as the metal binding cavities of the two proteins face each other. CONCLUSIONS: ZinT acts as a Zn(II)-buffering protein that delivers Zn(II) to ZnuA. GENERAL SIGNIFICANCE: Knowledge of the ZinT-ZnuA relationship is crucial for understanding bacterial Zn(II) uptake.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Periplasma/metabolismo , Salmonella enterica/metabolismo , Zinco/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Ultracentrifugação , Difração de Raios X
3.
Biochem Biophys Res Commun ; 430(2): 769-73, 2013 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-23206707

RESUMO

ZnuA is the soluble component of the high-affinity ZnuABC zinc transporter belonging to the ATP-binding cassette-type periplasmic Zn-binding proteins. The zinc transporter ZnuABC is composed by three proteins: ZnuB, the membrane permease, ZnuC, the ATPase component and ZnuA, the soluble periplasmic metal-binding protein which captures Zn and delivers it to ZnuB. The ZnuA protein contains a charged flexible loop, rich in histidines and acidic residues, showing significant species-specific differences. Various studies have established that this loop contributes to the formation of a secondary zinc binding site, which has been proposed to be important in the acquisition of periplasmic Zn for its delivery to ZnuB or for regulation of zinc uptake. Due to its high mobility the structure of the histidine-rich loop has never been solved by X-ray diffraction studies. In this paper, through a combined use of molecular modeling, mutagenesis and fluorescence spectroscopy, we confirm the presence of two zinc binding sites characterized by different affinities for the metal ion and show that the flexibility of the loop is modulated by the binding of the zinc ions to the protein. The data obtained by fluorescence spectroscopy have then be used to validate a 3D model including the unsolved histidine-rich loop.


Assuntos
Proteínas de Transporte de Cátions/química , Histidina/química , Modelos Moleculares , Zinco/química , Transportadores de Cassetes de Ligação de ATP , Sítios de Ligação , Proteínas de Transporte de Cátions/genética , Cátions Bivalentes/química , Histidina/genética , Estrutura Secundária de Proteína , Espectrometria de Fluorescência
4.
J Mol Biol ; 409(4): 630-41, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21530543

RESUMO

ZnuA is the soluble component of the high-affinity ZnuABC zinc transporter belonging to the cluster 9 group of ATP-binding cassette-type periplasmic Zn- and Mn-binding proteins. In Gram-negative bacteria, the ZnuABC system is essential for zinc uptake and homeostasis and is an important determinant of bacterial resistance to the host defense mechanisms. The cluster 9 members share a two (α/ß)(4) domain architecture with a long α-helix connecting the two domains. In the Zn-specific proteins, the so-called α3c and the α4 helices are separated by an insert of variable length, rich in histidine and negatively charged residues. This distinctive His-rich loop is proposed to play a role in the management of zinc also due to its location at the entrance of the metal binding site located at the domain interface. The known Synechocystis 6803 and Escherichia coli ZnuA structures show the same metal coordination involving three conserved histidines and a glutamic acid or a water molecule as fourth ligand. The structures of Salmonella enterica ZnuA, with a partially or fully occupied zinc binding site, and of a deletion mutant missing a large part of the His-rich loop revealed unexpected differences in the metal-coordinating ligands, as histidine 140 from the mobile (at the C-terminal) part of the loop substitutes the conserved histidine 60. This unforeseen coordination is rendered possible by the "open conformation" of the two domains. The possible structural determinants of these peculiarities and their functional relevance are discussed.


Assuntos
Proteínas de Bactérias/química , Proteínas de Transporte de Cátions/química , Histidina/química , Estrutura Terciária de Proteína , Salmonella enterica/química , Zinco/química , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sítios de Ligação , Proteínas de Transporte de Cátions/genética , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Salmonella enterica/metabolismo , Alinhamento de Sequência
5.
BMC Microbiol ; 11: 36, 2011 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-21338480

RESUMO

BACKGROUND: Zinc is an essential element for all living cells. Recent studies have shown that the ZnuABC zinc uptake system significantly contributes to the ability of several pathogens to multiply in the infected host and cause disease, suggesting that zinc is scarcely available within different tissues of the host. To better understand the role of zinc in bacterial pathogenicity, we have undertaken a functional characterization of the role of the ZnuABC-mediated zinc uptake pathway in enterohemorrhagic Escherichia coli O157:H7. RESULTS: In this work we have analyzed the expression and the role in metal uptake of ZnuA, the periplasmic component of the ZnuABC transporter, and of ZinT, another periplasmic protein which has been shown to contribute to zinc recruitment. We report that the expression of zinT and znuA, regulated by Zur, is induced in zinc-poor media, and that inactivation of either of the genes significantly decreases E. coli O157:H7 ability to grow in zinc depleted media. We also demonstrate that ZinT and ZnuA have not a redundant function in zinc homeostasis, as the role of ZinT is subordinated to the presence of ZnuA. Moreover, we have found that znuA and zinT are strongly induced in bacteria adhering to cultured epithelial cells and that lack of ZnuA affects the adhesion ability. In addition we have found that a fraction of apo-ZinT can be secreted outside the cell where the protein might sequester environmental zinc, inducing a condition of metal starvation in surrounding cells. CONCLUSIONS: The here reported results demonstrate that ZnuABC plays a critical role in zinc uptake also in E. coli O157:H7 and that ZinT contributes to the ZnuA-mediated recruitment of zinc in the periplasmic space. Full functionality of the zinc import apparatus is required to facilitate bacterial adhesion to epithelial cells, indicating that the microbial ability to compete with the host cells for zinc binding is critical to establish successful infections. The observation that ZinT can be secreted when it is in the apo-form suggests that its presence in the extracellular environment may somehow contribute to metal uptake or facilitate bacterial colonization of the intestinal epithelia.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Células Epiteliais/microbiologia , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/metabolismo , Zinco/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Aderência Bacteriana , Células CACO-2 , Escherichia coli O157/genética , Escherichia coli O157/patogenicidade , Proteínas de Escherichia coli/genética , Humanos
6.
J Bacteriol ; 192(6): 1553-64, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20097857

RESUMO

The pathways ensuring the efficient uptake of zinc are crucial for the ability of bacteria to multiply in the infected host. To better understand bacterial responses to zinc deficiency, we have investigated the role of the periplasmic protein ZinT in Salmonella enterica serovar Typhimurium. We have found that zinT expression is regulated by Zur and parallels that of ZnuA, the periplasmic component of the zinc transporter ZnuABC. Despite the fact that ZinT contributes to Salmonella growth in media containing little zinc, disruption of zinT does not significantly affect virulence in mice. The role of ZinT became clear using strains expressing a mutated form of ZnuA lacking a characteristic histidine-rich domain. In fact, Salmonella strains producing this modified form of ZnuA exhibited a ZinT-dependent capability to import zinc either in vitro or in infected mice, suggesting that ZinT and the histidine-rich region of ZnuA have redundant function. The hypothesis that ZinT and ZnuA cooperate in the process of zinc recruitment is supported by the observation that they form a stable binary complex in vitro. Although the presence of ZinT is not strictly required to ensure the functionality of the ZnuABC transporter, our data suggest that ZinT facilitates metal acquisition during severe zinc shortage.


Assuntos
Proteína de Transporte de Acila/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação Bacteriana da Expressão Gênica/fisiologia , Salmonella typhimurium/metabolismo , Zinco/metabolismo , Proteína de Transporte de Acila/genética , Animais , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Camundongos , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Zinco/farmacologia
7.
J Biol Chem ; 284(33): 22133-22139, 2009 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-19531494

RESUMO

Glutathione S-transferase of Plasmodium falciparum (PfGST) displays a peculiar dimer to tetramer transition that causes full enzyme inactivation and loss of its ability to sequester parasitotoxic hemin. Furthermore, binding of hemin is modulated by a cooperative mechanism. Site-directed mutagenesis, steady-state kinetic experiments, and fluorescence anisotropy have been used to verify the possible involvement of loop 113-119 in the tetramerization process and in the cooperative phenomenon. This protein segment is one of the most prominent structural differences between PfGST and other GST isoenzymes. Our results demonstrate that truncation, increased rigidity, or even a simple point mutation of this loop causes a dramatic change in the tetramerization kinetics that becomes at least 100 times slower than in the native enzyme. All of the mutants tested have lost the positive cooperativity for hemin binding, suggesting that the integrity of this peculiar loop is essential for intersubunit communication. Interestingly, the tetramerization process of the native enzyme that occurs rapidly when GSH is removed is prevented not only by GSH but even by oxidized glutathione. This result suggests that protection by PfGST against hemin is independent of the redox status of the parasite cell. Because of the importance of this unique segment in the function/structure of PfGST, it could be a new target for the development of antimalarial drugs.


Assuntos
Glutationa Transferase/metabolismo , Plasmodium falciparum/metabolismo , Animais , Sítios de Ligação , Dimerização , Glutationa/química , Hemina/química , Cinética , Modelos Biológicos , Conformação Molecular , Mutagênese Sítio-Dirigida , Mutação , Oxirredução , Ligação Proteica , Estrutura Terciária de Proteína
8.
Infect Immun ; 75(12): 5867-76, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17923515

RESUMO

To investigate the relevance of zinc in host-pathogen interactions, we have constructed Salmonella enterica mutant strains in which the znuA gene, which encodes the periplasmic component of the ZnuABC high-affinity Zn2+ transporter, was deleted. This mutation does not alter the ability of Salmonella to grow in rich media but drastically reduces its ability to multiply in media deprived of zinc. In agreement with this phenotype, ZnuA accumulates only in bacteria cultivated in environments poor in zinc. In spite of the nearly millimolar intracellular concentration of zinc, we have found that znuA is highly expressed in intracellular salmonellae recovered either from cultivated cells or from the spleens of infected mice. We have also observed that znuA mutants are impaired in their ability to grow in Caco-2 epithelial cells and that bacteria starved for zinc display decreased ability to multiply in phagocytes. A dramatic reduction in the pathogenicity of the znuA mutants was observed in Salmonella-susceptible (BALB/c) or Salmonella-resistant (DBA-2) mice infected intraperitoneally or orally. This study shows that the amount of free metals available for bacterial growth within the infected animal is limited, despite the apparent elevated concentration of free metals within cells and in plasma and suggests that Salmonella exploits the ZnuABC zinc transporter to maximize zinc availability in such conditions. These results shed new light on the complex functions of zinc in vertebrate and bacterial physiology and pave the way for a better comprehension of pathogenic mechanisms in Salmonella infections.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Salmonella enterica/metabolismo , Zinco/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Meio Ambiente , Homeostase , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos DBA , Salmonella enterica/crescimento & desenvolvimento , Salmonella enterica/patogenicidade , Virulência , Zinco/deficiência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...