Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36772099

RESUMO

The Internet of Things (IoT) has become a part of modern life where it is used for data acquisition and long-range wireless communications. Regardless of the IoT application profile, every wireless communication transmission is enabled by highly efficient antennas. The role of the antenna is thus very important and must not be neglected. Considering the high demand of IoT applications, there is a constant need to improve antenna technologies, including new antenna designs, in order to increase the performance level of WSNs (Wireless Sensor Networks) and enhance their efficiency by enabling a long range and a low error-rate communication link. This paper proposes a new antenna design that is able to increase the performance level of IoT applications by means of an original design. The antenna was designed, simulated, tested, and evaluated in a real operating scenario. From the obtained results, it ensured a high level of performance and can be used in IoT applications specific to the 868 MHz frequency band.By inserting two notches along x axis, we find an optimal structure of the microstrip patch antenna with a reflection coefficient of -34.3 dB and a bandwidth of 20 MHz. After testing the designed novel antenna in real IoT operating conditions, we concluded that the proposed antenna can increase the performance level of IoT wireless communications.

2.
Sensors (Basel) ; 23(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36772609

RESUMO

The Internet of Things (IoT) concept involves connecting devices to the internet and forming a network of objects that can collect information from the environment without human intervention. Although the IoT concept offers some advantages, it also has some issues that are associated with cyber security risks, such as the lack of detection of malicious wireless sensor network (WSN) nodes, lack of fault tolerance, weak authorization, and authentication of nodes, and the insecure management of received data from IoT devices. Considering the cybersecurity issues of IoT devices, there is an urgent need of finding new solutions that can increase the security level of WSNs. One issue that needs attention is the secure management and data storage for IoT devices. Most of the current solutions are based on systems that operate in a centralized manner, ecosystems that are easy to tamper with and provide no records regarding the traceability of the data collected from the sensors. In this paper, we propose an architecture based on blockchain technology for securing and managing data collected from IoT devices. By implementing blockchain technology, we provide a distributed data storage architecture, thus eliminating the need for a centralized network topology using blockchain advantages such as immutability, decentralization, distributivity, enhanced security, transparency, instant traceability, and increased efficiency through automation. From the obtained results, the proposed architecture ensures a high level of performance and can be used as a scalable, massive data storage solution for IoT devices using blockchain technologies. New WSN communication protocols can be easily enrolled in our data storage blockchain architecture without the need for retrofitting, as our system does not depend on any specific communication protocol and can be applied to any IoT application.

3.
Sensors (Basel) ; 22(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35062463

RESUMO

In this paper, we present the design, development and implementation of an integrated system for the management of COVID-19 patient, using the LoRaWAN communication infrastructure. Our system offers certain advantages when compared to other similar solutions, allowing remote symptom and health monitoring that can be applied to isolated or quarantined people, without any external interaction with the patient. The IoT wearable device can monitor parameters of health condition like pulse, blood oxygen saturation, and body temperature, as well as the current location. To test the performance of the proposed system, two persons under quarantine were monitored, for a complete 14-day standard quarantine time interval. Based on the data transmitted to the monitoring center, the medical staff decided, after several days of monitoring, when the measured values were outside of the normal parameters, to do an RT-PCR test for one of the two persons, confirming the SARS-CoV2 virus infection. We have to emphasize the high degree of scalability of the proposed solution that can oversee a large number of patients at the same time, thanks to the LoRaWAN communication protocol used. This solution can be successfully implemented by local authorities to increase monitoring capabilities, also saving lives.


Assuntos
COVID-19 , Internet das Coisas , Humanos , Saturação de Oxigênio , Pandemias , RNA Viral , SARS-CoV-2
4.
Sensors (Basel) ; 21(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884097

RESUMO

Electric power infrastructure has revolutionized our world and our way of living has completely changed. The necessary amount of energy is increasing faster than we realize. In these conditions, the grid is forced to run against its limitations, resulting in more frequent blackouts. Thus, urgent solutions need to be found to meet this greater and greater energy demand. By using the internet of things infrastructure, we can remotely manage distribution points, receiving data that can predict any future failure points on the grid. In this work, we present the design of a fully reconfigurable wireless sensor node that can sense the smart grid environment. The proposed prototype uses a modular developed hardware platform that can be easily integrated into the smart grid concept in a scalable manner and collects data using the LoRaWAN communication protocol. The designed architecture was tested for a period of 6 months, revealing the feasibility and scalability of the system, and opening new directions in the remote failure prediction of low voltage/medium voltage switchgears on the electric grid.

5.
Sensors (Basel) ; 21(24)2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960460

RESUMO

This paper proposes a solution for the development of microclimate monitoring for Low Voltage/High Voltage switchgear using the PRTG Internet of Things (IoT) platform. This IoT-based real time monitoring system can enable predictive maintenance to reduce the risk of electrical station malfunctions due to unfavorable environmental conditions. The combination of humidity and dust can lead to unplanned electrical discharges along the isolators inside a low or medium voltage electric table. If no predictive measures are taken, the situation may deteriorate and lead to significant damage inside and outside the switchgear cell. Thus, the mentioned situation can lead to unprogrammed maintenance interventions that can conduct to the change of the entire affected switchgear cell. Using a low-cost and efficient system, the climate conditions inside and outside the switchgear are monitored and transmitted remotely to a monitoring center. From the results obtained using a 365-day time interval, we can conclude that the proposed system is integrated successfully in the switchgear maintaining process, having as result the reduction of maintenance costs.


Assuntos
Internet das Coisas , Microclima , Monitorização Fisiológica
6.
Sensors (Basel) ; 20(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722146

RESUMO

The digital revolution has changed the way we implement and use connected devices and systems by offering Internet communication capabilities to simple objects around us. The growth of information technologies, together with the concept of the Internet of Things (IoT), exponentially amplified the connectivity capabilities of devices. Up to this moment, the Long Range (LoRa) communication technology has been regarded as the perfect candidate, created to solve the issues of the IoT concept, such as scalability and the possibility of integrating a large number of sensors. The goal of this paper is to present an analysis of the communication collisions that occur through the evaluation of performance level in various scenarios for the LoRa technology. The first part addresses an empirical evaluation and the second part presents the development and validation of a LoRa traffic generator. The findings suggest that even if the packet payload increases, the communication resistance to interferences is not drastically affected, as one may expect. These results are analyzed by using a novel Software Defined Radio (SDR) technology LoRa traffic generator, that ensures a high-performance level in terms of generating a large LoRa traffic volume. Despite the use of orthogonal variable spreading factor technique, within the same communication channel, the collisions between LoRa packets may dramatically decrease the communication performance level.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...