Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Toxics ; 9(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34941768

RESUMO

This paper comprises an extensive study on the evaluation of decontamination efficiency of three types of reactive organic suspensions (based on nanosized adsorbents) on two real chemical warfare agents: soman (GD) and sulfur mustard (HD). Three types of nanoparticles (ZnO, TiO2, and zeolite) were employed in the decontamination formulations, for enhancing the degradation of the toxic agents. The efficacy of each decontamination solution was investigated by means of GC-MS analysis, considering the initial concentration of toxic agent and the residual toxic concentration, measured at different time intervals, until the completion of the decontamination process. The conversion of the two chemical warfare agents (HD and GD) into their decontamination products was also monitored for 24 h.

2.
Polymers (Basel) ; 13(21)2021 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-34771384

RESUMO

Novel polyurethane-based binders, specifically designed for environmentally responsible rocket propellant composites, were obtained by employing the polyester-polyols that resulted from the degradation of polyethylene terephthalate waste. A new class of "greener" rocket propellants, comprising polyurethanes (based on recycled PET) as the binder, phase stabilized ammonium nitrate (PSAN) as the eco-friendly oxidizer, and triethylene glycol dinitrate (TEGDN) as the energetic plasticizer, together with aluminum as fuel and Fe2O3 as the catalyst, is herein reported. The components of the energetic mixtures were investigated (individually and as composite materials) through specific analytical tools: 1H-NMR, FT-IR, SEM-EDX, DTA and TGA, tensile and compression tests, DMA, and micro-CT. Moreover, the feasibility of this innovative solution is sustained by the ballistic performances exhibited by these composite materials in a subscale rocket motor, proving that these new formulations are suitable for rocket propellant applications.

3.
Chem Commun (Camb) ; 52(88): 12956-12959, 2016 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-27752663

RESUMO

We report the applicability of a hybrid system comprising a La3+-based catalyst and an Au/TiO2 photocatalyst in the decomposition of chemical weapons. This system is able to perform complete degradation of soman, sarin and VX in less than 1 minute under low basic conditions and visible light irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA