Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Planta ; 224(6): 1341-52, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16761134

RESUMO

Two new tomato hexokinase genes, LeHXK3 and LeHXK4, were cloned and characterized, placing tomato as the first plant with four characterized HXK genes. Based on their sequence, LeHXK3 is the third membrane-associated (type-B) and LeHXK4 is the first plastidic (type-A) HXK identified in tomato. Expression of HXK-GFP fusion proteins in protoplasts indicated that the LeHxk3 enzyme is associated with the mitochondria while LeHxk4 is localized in plastids. Furthermore, LeHxk4::GFP fusion protein is found within stromules, suggesting transport of LeHxk4 between plastids. Structure prediction of the various plant HXK enzymes suggests that unlike the plastidic HXKs, the predicted membrane-associated HXKs are positively charged near their putative N-terminal membrane anchor domain, which might enhance their association with the negatively charged membranes. LeHxk3 and LeHxk4 were analyzed following expression in yeast. Both enzymes have higher affinity for glucose relative to fructose and are inhibited by ADP. Yet, unlike the other HXKs, the stromal HXK has higher Vmax with glucose than with fructose. Expression analysis of the four HXK genes in tomato tissues demonstrated that LeHXK1 and LeHXK4 are the dominant HXKs in all tissues examined. Notably, the plastidic LeHXK4 is expressed in all tissues including starchless, non-photosynthetic sink tissues, such as pink and red fruits, implying phosphorylation of imported hexoses in plastids. It has been suggested that trehalose 6-phosphate (T6P) might inhibit HXK activity. However, none of the yeast-expressed tomato HXK genes was sensitive either to T6P or to trehalose, suggesting that unlike fungi HXKs, plant HXKs are not regulated by T6P.


Assuntos
Hexoquinase/metabolismo , Plastídeos/enzimologia , Solanum lycopersicum/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Primers do DNA , DNA Complementar , Genes de Plantas , Hexoquinase/química , Hexoquinase/genética , Solanum lycopersicum/genética , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos
2.
Phytochemistry ; 58(6): 841-7, 2001 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11684180

RESUMO

Three fructokinase isozymes (FKI, FKII, FKIII) were separated from both immature and ripe tomato fruit pericarp. All three isozymes were specific for fructose with undetectable activity towards glucose or mannose. The three isozymes could be distinguished from one another with respect to response to fructose, Mg and nucleotide donor concentrations and this allowed the comparison of the fruit enzymes with the gene products of the two known cloned tomato fructokinase genes, LeFRK1 and LeFRK2. FKI was characterized by both substrate (fructose), as well as Mg, inhibition; FKII was inhibited by neither fructose nor Mg; and FKIII was inhibited by fructose but not by Mg. ATP was the preferred nucleotide donor for all three FKs and FKI showed inhibition by CTP and GTP above 1 mM. All three FKs showed competitive inhibition by ADP. During the maturation of the tomato fruit total FK activity decreased dramatically. There were decreases in activity of all three FKs, nevertheless, all were still observed in the ripe fruit. The two tomato LeFRK genes were expressed in yeast and the gene products were characterized with respect to the distinguishing characteristics of fructose, Mg and nucleotide inhibition. Our results indicate that FKI is the gene product of LeFRK2 and FKII is probably the gene product of LeFRK1.


Assuntos
Frutoquinases/metabolismo , Saccharomyces cerevisiae/genética , Solanum lycopersicum/enzimologia , Cromatografia Líquida de Alta Pressão , Cromatografia por Troca Iônica , Frutoquinases/antagonistas & inibidores , Frutoquinases/genética , Frutose/metabolismo , Genes de Plantas , Proteínas Recombinantes/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
3.
Plant Sci ; 160(2): 209-218, 2001 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-11164592

RESUMO

Two different partial sequences encoding putative hexokinase (HXK, ATP: hexose-6-phosphotransferase, EC 2.7.1.1) were isolated from tomato (Lycopersicon esculentum) by RT-PCR using degenerate primers. Southern blot analysis suggested the existence of two divergent HXK genes. A complete cDNA of one HXK was isolated by screening a cDNA library prepared from young cherry tomato fruit. The 1770 bp cDNA of LeHXK2 contained an open reading frame encoding a 496 amino acid protein that has 69% identity with the two Arabidopsis HXKs, 83 and 85% identity with potato StHXK1 and tobacco NtHXK, respectively. However, this clone had 97% amino acid identity with potato StHXK2 and, therefore, was named LeHXK2. LeHXK2 cDNA was expressed in a triple mutant yeast (Saccharomyces cerevisiae) strain which lacked the ability to phosphorylate glucose and fructose and, therefore, was unable to grow on these sugars as carbon sources. Mutant cells expressing LeHXK2 grew on both glucose and fructose with shorter doubling time on glucose. The kinetic properties of LeHXK2 expressed in yeast were determined after the purification of LeHXK2 by HPLC-ion exchange chromatography, confirming the identity of LeHXK2 as hexokinase with higher affinity to glucose. LeHXK2 mRNA was detected by RT-PCR expression analysis in all organs and tissues and at all stages of fruit development. However, semi-quantitative RT-PCR analysis showed that LeHXK2 was most highly expressed in flowers.

4.
Plant Cell ; 11(7): 1253-66, 1999 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-10402427

RESUMO

Sugars are key regulatory molecules that affect diverse processes in higher plants. Hexokinase is the first enzyme in hexose metabolism and may be a sugar sensor that mediates sugar regulation. We present evidence that hexokinase is involved in sensing endogenous levels of sugars in photosynthetic tissues and that it participates in the regulation of senescence, photosynthesis, and growth in seedlings as well as in mature plants. Transgenic tomato plants overexpressing the Arabidopsis hexokinase-encoding gene AtHXK1 were produced. Independent transgenic plants carrying single copies of AtHXK1 were characterized by growth inhibition, the degree of which was found to correlate directly to the expression and activity of AtHXK1. Reciprocal grafting experiments suggested that the inhibitory effect occurred when AtHXK1 was expressed in photosynthetic tissues. Accordingly, plants with increased AtHXK1 activity had reduced chlorophyll content in their leaves, reduced photosynthesis rates, and reduced photochemical quantum efficiency of photosystem II reaction centers compared with plants without increased AtHXK1 activity. In addition, the transgenic plants underwent rapid senescence, suggesting that hexokinase is also involved in senescence regulation. Fruit weight, starch content in young fruits, and total soluble solids in mature fruits were also reduced in the transgenic plants. The results indicate that endogenous hexokinase activity is not rate limiting for growth; rather, they support the role of hexokinase as a regulatory enzyme in photosynthetic tissues, in which it regulates photosynthesis, growth, and senescence.


Assuntos
Arabidopsis/enzimologia , Hexoquinase/genética , Fotossíntese/genética , Solanum lycopersicum/genética , Arabidopsis/genética , Heterozigoto , Homozigoto , Solanum lycopersicum/crescimento & desenvolvimento , Plantas Geneticamente Modificadas
5.
Plant Physiol ; 117(1): 85-90, 1998 May.
Artigo em Inglês | MEDLINE | ID: mdl-9576777

RESUMO

Two divergent genes encoding fructokinase, Frk1 and Frk2, have been previously shown to be expressed in tomato (Lycopersicon esculentum L.) and have now been further characterized with regard to their spatial expression and the enzymic properties of the encoded proteins. Frk1 and Frk2 mRNA levels were coordinately induced by exogenous sugar, indicating that both belong to the growing class of sugar-regulated genes. However, in situ hybridization indicated that Frk1 and Frk2 were expressed in a spatially distinct manner, with Frk2 mRNA primarily localized in cells of the fruit pericarp, which store starch, and Frk1 mRNA distributed ubiquitously in pericarp tissue. To evaluate the biochemical characteristics of the products of the Frk1 and Frk2 genes, each cDNA was expressed in a mutant yeast (Saccharomyces cerevisiae) line defective in hexose phosphorylation and unable to grow on glucose or fructose (Fru). Both Frk1 and Frk2 proteins expressed in yeast conferred the ability to grow on Fru and exhibited fructokinase activity in vitro. Although both Frk1 and Frk2 both utilized Fru as a substrate, only Frk2 activity was inhibited at high Fru concentrations. These results indicate that Frk2 can be distinguished from Frk1 by its sensitivity to substrate inhibition and by its temporal and spatial pattern of expression, which suggests that it plays a primary role in plant cells specialized for starch storage.

6.
Plant Physiol ; 113(4): 1379-84, 1997 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-9112782

RESUMO

Two cDNA clones (Frk1 and Frk2) encoding fructokinase (EC 2.7.1.4) were isolated from tomato (Lycopersicon esculentum). The Frk2 cDNA encoded a deduced protein of 328 amino acids that was more than 90% identical with a previously characterized potato (Solanum tuberosum) fructokinase. In contrast, the Frk1 cDNA encoded a deduced protein of 347 amino acids that shared only 55% amino acid identity with Frk2. Both deduced proteins possessed and ATP-binding motif and putative substrate recognition site sequences identified in bacterial fructokinases. The Frk1 cDNA was expressed in a mutant yeast (Saccharomyces cerevisiae) line, which lacks the ability to phosphorylate glucose and fructose and is unable to grow on glucose or fructose. Mutant cells expressing Frk1 were complemented to grow on fructose but not glucose, indicating that Frk1 phosphorylates fructose but not glucose, and this activity was verified in extracts of transformed yeast. The mRNA corresponding to Frk2 accumulated to high levels in young, developing tomato fruit, whereas the Frk1 mRNA accumulated to higher levels late in fruit development. The results indicate that fructokinase in tomato is encoded by two divergent genes, which exhibit a differential pattern of expression during fruit development.


Assuntos
Frutoquinases/biossíntese , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/enzimologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , DNA Complementar , Frutoquinases/química , Frutoquinases/genética , Solanum lycopersicum/genética , Dados de Sequência Molecular , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Homologia de Sequência de Aminoácidos , Solanum tuberosum/enzimologia
7.
Plant Physiol ; 113(3): 739-746, 1997 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12223639

RESUMO

Immature green tomato (Lycopersicon esculentum) fruits undergo a period of transient starch accumulation characterized by developmental changes in the activities of key enzymes in the sucrose (Suc)-to-starch metabolic pathway. Activities of Suc synthase, fructokinase, ADP-glucose (Glc) pyrophosphorylase, and soluble and insoluble starch synthases decline dramatically in parallel to the decrease in starch levels in the developing fruit. Comparison of "maximal" in vitro activities of the enzymes in the Suc-to-starch pathway suggests that these same enzymes are limiting to the rate of starch accumulation. In contrast, activities of invertase, UDP-Glc pyrophosphorylase, nucleoside diphosphate kinase, phosphoglucoisomerase, and phosphoglucomutase do not exhibit dramatic decreases in activity and appear to be in excess of starch accumulation rates. Starch accumulation is spatially localized in the inner and radial pericarp and columella, whereas the outer pericarp and seed locule contain little starch. The seed locule is characterized by lower activities of Suc synthase, UDP-Glc pyrophosphorylase, phosphoglucomutase, ADP-Glc pyrophosphorylase, and soluble and insoluble starch synthases. The outer pericarp exhibits comparatively lower activities of ADP-Glc pyrophosphorylase and insoluble starch synthase only. These data are discussed in terms of the developmental and tissue-specific coordinated control of Suc-to-starch metabolism.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...